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Existence and Maximal Time Regularity for
Linear Parabolic Integrodifferential Equations

Paolo Acquistapace
Scuola Normale Superiore, Piazza dei Cavalieri, 7-56100 Pisa, 1 taly

The linear equation v'(z)— A()v()+ jFB(1, syo{s)yds = f(2), t€[0,T], with the
initial datum w{0) = x, in a Banach space E is considered: here { A(#)} is a family
of gemerators of analytic semigroups in £ with domains D,,,, which may vary with
¢ and be not dense in E, and { B(¢,s)} is a family of closed linear operators with
Dy, oy 2 Dy, Sharp existence and Halder regularity results, as well as a represen-
tation formula, are obtained by a perturbation argument for strict solutions v €
C}(0,T), E), provided f is Holder continuous, x € Dyq). and suitable compatibil-
ity conditions involving x and f(0) hold: similar results are also proved for classical
solutions v € C'(10, T], E) when x € D, and f is Holder continuous in any closed
subinterval of 10, T, with a singularity at ¢= 0.

0. Introduction

This paper is concerned with continuously differentiable solutions of the
linear integrodifferential Cauchy problem

v(1)— A(t)o(1)— fOIB(r,S)U(S)de(I), telo, 7],

v(0)=x | (0.1)

in a Banach space E; here x€ E, f:[0,T]—=E is a continuous function,
and {A(D},corp (BLS)ocs<icr 8T€ WO families of closed linear
operators in E. We consider here the parabolic case of (0.1), i.e., we suppose
that for each ¢ €[0, T}, A(¢) is the infinitesimal generator of an analytic
semigroup {e*4" ), (; as the domains D,(f) are possibly not dense in E,
these semigroups need not be strongly continuous at £=10. About { B(¢, 5)}
we require that the domains Dy, ;) contain D, for O0<s<t<T, and in
addition we assume a Holder condition on t > B(1,5)A(s) " (not uni-
formly 1n s).

There are a lot of papers considering the problem (0.1} under different
assumptions: we quote here just a few of them, referring to Acquistapace
and Terreni [4] for a more detailed list of references. In Lunardi and
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Sinestrari [10] and in [4] the problem (0.1) is considered respectively in the
constant-domain case (ie. Dyn=Dyy Yt€[0,T]) and in the variable-
domain case; the method in both papers consists of a fixed-point argument,
which is based on the sharp existence and regularity results known for the
linear nonintegral Cauchy problem in the case of constant domains
(Sinestrari [12], Acquistapace and Terreni [2]) as well as variable domains
(Acquistapace and Terreni [1]). This method leads to very precise smooth-
ness results and does not require the construction of the fundamental
solution, or resolvent operator, of (0.1); this is the main difference with
respect to other papers such as Friedman and Shinbrot [6], Tanabe [15], and
Priiss [11]. In both [10} and [4] only strict solutions are treated, i.e, solutions
v(r) such that v'(z) and A(¢)v(¢) are continuous in the whole interval
[0.T], whereas in [6], [15], [11]—under stronger assumptions—classical
solutions are also studied, ie. continuous functions v(t} such that
v'(t), A(t)v(t) are continuous in ]0, 7] and the equation (0.1) holds in
0. 7.

In the present paper we deal with both strict and classical solutions
(whose exact meaning 1s given in Definitions 1.4 and 1.5 below), proving
existence, uniqueness, and maximal regularity: this means that «’, A(-)u(-)
are as smooth as f is, provided some necessary and sufficient compatibility
conditions on the data x, f hold. Concerning strict solutions, we find again,
and improve slightly, the results of [10] and f4]); concerning classical
solutions we generalize Priiss’s definition in [11], proving existence and
uniqueness in a larger class of functions, and allowing data f which are
Haolder continuous in any closed subinterval of 10, T'], with a singularity at
¢t = 0. Our method consists, as in the mentioned papers, of considering the
integral term of (0.1) as a perturbation of the linear nonintegral Cauchy
problem; but, instead of looking for a fixed-point technique, we try to
obtain a representation formula for the solution by solving a suitable
integral-type equation. This is also the method of [11], where an operator-
valued integral equation is solved in order to find the resolvent operator,
whereas our equation is vector-valued and yields directly the strict or
classical solution of (0.1), without passing through the comstruction of the
resolvent operator; by a careful analysis of this formula we also get our
maximal regularity results. A heuristic derivation of our representation
formula can be found at the beginning of Section 3.

Let us describe now the subject of the next sections. In Section 1 we list
our notation and hypotheses and prove some preliminary results; Section 2
contains a survey of the linear nonintegral Cauchy problem in the varizble
domain case; Section 3 is devoted to a series of technical lemmata as a
prelude to our main theorems; in Section 4 we study the properties of strict
and classical solutions of (0.1), again assuming variable domains; Section 5
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i i i ive an
concerns the case of constant domains; finally n Section 6 we giv

example.

1. Notation, Assumptions, and Preliminaries
Let E be a Banach space and let T>0. We will use the following

function spaces:

C([0,T], E) and, for 1 < p < o0, L:(O, T, E);.

for 0 < & <1, the Holder spaces C (0, T, E); e
CY(0,T), E)={u€ C(0, T}, E): v/ =du/dt €C(0, T}, ) 011 E)
for <8<l CM(0,T)E)={u€CN0,T),E):w' €C(0. T}, E)),
. i s with their usual norms;

?;Tci E:eOBaléa?]I(lJ Sg"?::i?) ={u:10,T]> E continuous: { — t*u(t) €
L=(0, T, B}, &rhich is a Banach space with norm

oo o

= sup t*ul?)]g
“uuq([e.r], E) i
. 5
f. CU0,T], E)==N.ep,nCe T} E). and, for 0 <§ <_1, 30, T], E),
C(10, T}, E), and C¥(0, T, E), which are defined similarly.

If F is another Banach space, we denote by Z(E, ) [qrh{(is)u;i
E = F] the Banach space of bounded linear operators E — F, with its

HOI'II;I-A_ D.C E — E is a linear operator, we denote by p(4) its resolvent
:D,C :

i -4~
by R(A, 4) its resolvent operator (A
Setlii:tdus}{ist ;ow o)ur assumptions about the operators {A()} and { B(z,5)}

mentioned in the introduction. Set
A={(f,_s)E[O,T]2:S<t}. (1.1)

Hypothesis 1. For each ¢ €[0, T), A(t):D;,CE—E isa closed linear

operator such that:

i p(A(EN2 S, ={A
i |R(A, A em <

Hypothesi; IL. Foreach A € Sy, wehave 1 R(A, Ay e CH{0, T], L(E))

=C:largA| < 6} {0} for some b, = 1mw/2,7[;
M/Q+{A)VLE[0,T), YA E S, for some M=>0.

and

N
——— viel0,T], VAES,,
STT A L o

H%R(A’ A1) ‘.z’(m

for some N>0, a<10,1[.
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Hypothesis I1I.

[ G4 - a0

g Lig—r|®
e it —r Vi, re(0,T]

“for some L > (.

In particular, under the above assumpti
) ptions, for each t €[0,T]), A(z
generates a bounded analytic semigroup {e24y, _, which is r[)ossi{)ly rgoi
;it;ogg?r c%ntmuous at £ = 0; moreover ¢~ ¢ is in CI([0,T], L(E)) for
ed £>0, and by its usual representati i din it 1
casiy soon that P on via a Dunford integral, it is

H%E%A(r)

a—1
g(aéconstg vEx>0, vre[0,7]. (1.2)

Hy[_Jothesis IV. For each (1,s)€ A, B(t,5): Dy, . SE— E 1s a closed
linear operator and Dy, ,2 Dy, V(. 5) €A ’ '

Hypothesis V.

|B(t,5)4(5) | g, < _'Z% V(r,5)EA

{

for some K >0, B=]0,1[.

Hypothesis VI. For each € € ]0, 8] there exists A, > 0 such that

|B(2.5)A(s) "= B(r,s) A(s g —=r)

-1
) H,?(E} m

vz, s).(r, A
with r <t (t,5),(r,5) €

These assumptions will guarantee the existence and regularity of strict

solutions of (0.1). : ; : g
PP (0.1). In the study of classical solutions we will sometimes need

Hypothesis VII. For each e €10, 8] there exists @, > 0 such that

|B(t.5)A(s) = B(2,0)4(0) |y, < Qiﬁg

v(t,5),(t,0)EA

with g < s.

REMARK 11 Hypothese's 1, II, and III assure the solvability of the nonin-
tegral version of (0.1), i.e. the case B(z,5)=0 (see Kato and Tanabe 8]
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Acquistapace and Terrent [1D; however, Hypothesis III can be modified and
weakened (Yagi [17,18]). Hypotheses IV, V, and VI are very close to, and
slightly more restrictive than, the corresponding ones in [4], but they
generalize those of [11] relative to { B(Z, s)}, even when also Hypothesis VII
is assumed. On the other hand, concerning { A(#)}, Hypothesis 11 is
replaced in [11] by that of [17], which is independent of it.

Example 1.2, Tt is easily seen that if we choose B(f,s)=1(z—s5)"'A(s) or
B(t,s)=U3d/ at)efH 0], A(s), then Hypotheses IV-VII are fulfilled
(compare with Lemma 2.3 below).

Definition 1.3. We set
c(l0,7], D)= {uEC([O,T],E):u(r) e Dy, viel0,T].
and A(-)u(-)EC([O,T],E)}

(this space was denoted by C([0, T, Dy..,) in {#)- By Hypothesis I, itis a
Banach space with norm

Hullcqo, .00 ™= NAC)u( D e By

Similarly we define C (10, T, D,) and, for p=> 0, C,00, T1, D,). For the
sake of simplicity, from now on we will simply write Au, R(A, A)u t0

mean A(-)u(-), R(A, ACDul-)-

We now define our solutions.

Definition 1.4. Let f € C([0, TV, E), x € Dy We say that v:{0,T]— Eis
a strict solution of (0.1) if:

i veCy(0,T), EYNC(0, T, Dy}
ii. v(0)=x and (0.1) holds in[0,T]

Definition 1.5. Let f €C(0, T}, E}, x€ E. We say that v:(0,T1—= E is a
classical solution of (0.1) if:
i vec(o,T], EN CH10, TL, EYNCQ0, T), Dy);
ii. there exists the integral

f‘B(t,s)u(s)ds: lim f‘B(r,s)U(s)ds
0 n

n—07
— im [[B(s)a(s) ] a(s)v(s) s,

70"y

and ¢ [3B(1, o(s)ds € C(0, T, EY;
iii. v(0)= x, and (0.1) holds in J0, 7).



Paolo Acquistapace

REMARK 1.6. Strict and classical solutions are called strong and strict,
respectively, in [11]; we also note that our definition of classical solutions is
more general than in [11], where such solutions are required to be in
C,(I0.T1, D).

We will frequently use certain interpolation spaces between D, ,, and E,
which are defined as follows:

Definition 1.7. For each r [0, T] and & 10, 1[ we set
DA(!)(Hs ) = {x € E: sup 5—8“("&/‘([) ~1)x ”E < 00};
£>0

it is a Banach space with norm

”x”DA(r)(ﬂ,ac) = ”x”E + gsu%gﬁﬁn(e&i(z) _l)x HE
=

Obviously if 0 <o @ <1
Dy1yS Dy (8,00) € Dyy(0,00) © Dy vte[0,T].

When 6 =0 or # =1, Definition 1.7 would give D, ,(0,00)=E, D,,,(1,¢)
2 Dy, (without equality in general). However, we adopt the following
convention:
Convention 1.8. For each r [0, T] we set ‘

DA(:)(O'-' ) = Dy s DA(:)(LOO) =D,

We finish this section with a useful lemmas:

Lemma 1.9. Under Hypothesis I, for each 8, o €[0,1] we have

6—
HegAU)IL?(DA(n(G,oo)~D,4(:)(c~co))'*<- COHStg( HA0 V({>0, Vie [05 T]

PROOF. See {12, Proposition 1.13 and 1.14]. a

2. The Nonintegral Probiem
We collect in this section some propositions about the Cauchy problem
w(t)—A()u()=f(1), r€]0,T],
u(0) = x, (2.1)

where x € E and f:(0,T]— E are prescribed data and { A(#)},cpo7 5 a
family of operators satisfyving Hypotheses I, II, and III. Most of the results
are proved in [1] and in [4, Appendix]. First of all, for any ¢ € L'(0, T, E)

10
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set
To(1) = [0~ Oo(s) a5, t=[0.T], (22)
0

Po(t)= [P(r.5)e(s)ds,  1<[0.T], (2.3)
0
where (compare with Example 1.2)
a r
P(t.5)= [Eeé’[( ]L=:—s’

We recall that by (1.2)
2(z, 5) leer < comst(r—s)*""  V(1,5)€A.

(t,s)€A. (24)

(23)

Our first statement concerns Strict solutions of (2.1).

Proposition 2.1. Under Hypotheses I, I, I, fix €10, a] and let x € Dy,
£ &C¥[0,T), E). The following assertions are true:

i. if a strict solution of (2.1) exists, then the vector
d -1
Jom A + O~ Sa()™]_a@x @9

belongs to Doy _ . _ » ;
ii. if. conversely y, €D, then there exists a unigue SIFict solufion 4 o,

(2.1), which is given by
u(t) = e x + Tg(t), t=[0,T], (2.7)
where g={(1+P) [ f— P(-,0)x}, ie., g is the unique solution of the
integral equation
g(2)+ Pg(s) = f(1)— P(.0)x, re0,T]. (2.8)

Assume in addition yy € D, Then we have:

iii. there exists C, >0 such that
5Tt Aull e . 6 < C, { “A(O)xnp -+ Hf“(-a([OJ'L E)}
vielo,T]: (2.9)

HM'HC([& 1]

iv. w, AueC*(0.TL.E); ’ .
v. w'. Aue C3([0, T1, E) if and only if yo € Dyy(8.00);
vi. if ¥y € Dyy(8,00), there exists C, > 0 such that

Nl cago.r. iy + 1A o019
< C{14O)xll g+ 1 esqo.n. o5 1ol .0}
vielo,T]. (2.10)

11
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PROOF. Parts i, ii, iv, and v are proved in [1, Sections 2 and 5]. The proof of ] .
iii and vi in the case =T is in [4, Appendix]; the general case r €]0,T] Lemma 2.4. Let P be the operator defined in (2.3). Th
follows in the same manner. . ] C,> 0 such that:

en there exist Cs,

Let us consider now classical solutions of (2.1). L 1Pol . ;< Cst Il oy 1€ 10, T,

i 1Po( s < Gl il no.e by Sl e jnn ) TEEL T

Proposition 2.2. Under Hypotheses I, II, III, fix 6€]0,a] and x€E,

f e L[N0, T, EYNC?(0, T, E). The following assertions are true: PROOF. i: By (2.5) we have
t rr a—1y .,
i. if a classical solution of (2.1) exists, then x €D, f’” Po(r}|Edr < cfo j; (r—s)"" llo(s) | zdsdr
ii. if, conversely, x € Dy, then there exists a unique classical solution u 0 ¢t et Y
of (2.1), which again is given by (2.7) with g = (L+ P)"*[f — P(-,0)x]. = cf f (r—s) " drle(s)|gds <ol ne.r e
R 0s
Assume in addition x € D, Then we have: ii: Similarly
iii. if x € D(8,00), 8 €[0,1), there exists C;(8) > 0 such that 1P ()], < c{f‘/2+ f’ }(, —5)  Me(s) g as
¢ 0 t/2

lA()u() o< GO P Hxll s+l poe. s o l B
o gc(i) 1L’/2\i¢(s>11£ds+c£/2(r—s) ! ds il cqen.n £y

1 leqeszae ts[f]Cs([:/l,z]_E)} 7
vie]0.T]; (2.11) which implies the result. =
iv. u', Aue C%Q0,T), E). 7_
Lemma 2.5.
PROOF. Paris ii and iv are proved in [1, Section 4} and [4, Appendix]. Let us . For each ¢ €10, o] there exists C,(e) >0 such that
prove i. By repeating the argument used in the proof of [1, Proposition 1.9], et o }
one finds that any classical solution u of (2.1) must satisfy 1P| ceiie 21 BY S Cj(e){r ol 20,0 B Ce/4.1), E])O .
vie |U, .

u(1) = eOx + 0(1) as t—0%
ii. There exists Cy> 0 such that for each 8 €10, a] we have

as u € C([0, T], E) and «(0)= x by definition, it follows that )
Cg{t"lllqbll vone T Holicq e e ™ F[M C“([’/“"]*E’}

vie 0, T

+ - o =
eMOx —x=0(1) as t—0%, le x&€Dy. 1Pl ez e

Finally we have to verify iil: in order to do this, we need some lemmata, in . o o
with a more precise specification ot the

which Hypotheses I, IT, III are always assumed. eroOF. i It follows by repeating, Y :

constants, the estimate used in the proof of [1, Proposition 3.5(iv)]- N

Lemma 2.3. For each ¢ €10, a] there exists C(¢)> 0 such that ii: Tt follows by repeating the argument of the proof of [4, Lemma A. (1)|:i
(r—r)

1P(r.5) = P(r.5) ey < Cule) v(1,5),(r.s) €4 the equation g + Pg

Lemma 2.6. Let g=(1+ PY Y% be the unique solution of
= .
i There exists Cy> 0 such that

1+ P) "¢) oy S Collellzoe s

(]’ — )1 +e— 8
with r < t, where P{1,s) is defined by (2.4).

vie 0,7
PROOF. Itis[1, Lemma 3.2]. O

13
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ii. There exists Cyo> 0 such that Finally let us prove vi: We can write
- &x— o 3
||[(1+P) 1¢](f) HEQCm{f ol z.e.myH H‘i’“C([l/ZJ],E)} P(I,O)x=-2—ir?fe”‘3?R(?\,A(f))xd?k, 110,71,
Y

vie]0,T). P A=+0) with fixed 6
iii. For each ¢ €10, a} there exists Cpy(e)> 0 such that where y=7y U{0)UY" Y*={}€ Crargd ==
L < /2, 8,]. Hence if 0 < /2 <s <r<t<T we have
”(1 + P) q,)”(.‘e({z/z,t]. Ey

P(1,0)x— P(r.0)x

< Cn(f){fﬂ_e_lﬂﬁbnﬁ(o .5y THPlieqe 6.1 E)} 3
1. oL 1 al 9 _ 2 R(n.A(s lxd?\
vre 0, T). =§‘qﬁff [3,-3(7\,,4(;»-)) 3s (A, A(s))
PROOF. In the proof of [1, Propositiron 3.6] it is shown that ~1_ f frke’“’ do % R(\, A(s))xdA
-1 .
[+ P) o] () =0(0)+ [R(t.5)o() s, ¢0.T], : :
where R(z, 5) is a suitable kernel sansfymg (2.5); hence i and ii follow as in = —2_177_1. fe”‘{[—é—rR(P\, A(r))— m‘RU\a A(S))_\
the proof of Lemma 2.4. To prove iii, note that g=(1+ P) "~ = — Pg + ¢ Y
hence the result follows easily by using Lemma 2.5i-ii and parts i-ti above. » [ (1= e ®)x + [ A(0)” L_a(r)” l]
O .
r 1 rA() ]
Lemma 2.7. Let x € E. Then: xA(0)e A(O)*'.‘XA(O)E X
i. there exists C;, > 0 such that 3 N l[—d—A(r)_l— iA(g)-l}A(O)e”“o)x
1P(2,0) x| < Coat™ Hlxll £ vVie]0.T] A
ii. there exists C)y> 0 such that RN, A(r)— R(A. A(S))] A( )flA(O)erA(O)x
1P(-.0)xll 0. ey Cratlixll s VEE]O, T
ili. for each e €10,a] there exists C4(€) > O such that - R(A, A(s))[ A(r) _ _CEA(S)*]A(O)em(O)x
”P('BO)x”C'{[x/z,z],E)"<'-:-C14(£)IH_E_LHXHE VIE]():T]- p . . L
If in addition x € D 4(8,00), 8 € [a.1], then: +=R(X, AsN]a() = a(n) | 4(0)e X} 2
iv. there exists C 5> 0 such that 1 P
- - Ao) AA
1P(2,0)x ] < Cist* Hixlip ooy VE10.TT S ET f L Ae { SSR(A, A(5))
v. there exists Cq > 0 such that y [(1_- A®) x + [A(O)—l__ A(.S‘)-1]
1P(-,0)x [l 11,2, 5y < < Cret? 111 10, 6, o0 vie]0,T];
1
vi. for each € €10, a] there exists Cl.,(e) > 0 such that x A(0)e**Ox + XA(O)eSA(mX]
[2(-.0)x | e<qemi. E)“-Cl",’( €)r’” |xﬂpm,(e &) vie |0, T].

sA{O)
+ngA(s) '4(0)e

PROOF. Parts i and ii are quite easy; part iii follows directly by Lemma 2.3. d 1 SAD)
Suppose now x € D,,(8, ), 8 €[a,1]: then parts iv and v follow by the - R(X, A(S))EA(S) A(0)e x} dA do.
proof of [1, Proposition 3.3()—(1ii)].
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Consequently we easily deduce by Lemma 1.9
Il P(r,0)x— P(s5,0)x|

&
{(r—s) ols? 1
<
-..,c{ A8 +j;{0.2—04+o.l—asl—ﬂ‘]dG}HXHDAM(G.Dﬂ

r—4s 5 $ALS d -
(el —1) 40— A(s) 1A(0)e”‘°’x”5

d -1
——A
ds (S) lee ey

(r—s)°

= }qu%,w.m

*|

(r—s)"
L S ALs)
< C{ A7 + [le™ ”2(5,0,4“.,(5_:;0))‘

X

< ( (r___s)e
%¢C E) t1+€73 ”x“DA(O,(ﬂ.oo),

and the proof is complete. a

Let us go back now to the proof of proposition 2.2(iii). By (2.7) it follows
that the function Au is given by

A(Du(ty=A(r)e"x
+ [4(0)e4 0 g(s) = g(D)] ds+ (O =1)g ().

t=]0,T],

where g =(1+ P)~1(f— P(-,0)x). Hence, by collecting the results of the
al?ove le11:1mata, one obtains in a standard way the desired estimate (2.11)
with the interval [z/16,¢] in place of [¢/2,¢] on the right-hand side: it is
clear however that suitable modifications to the proofs of the Jemmata
would lead to the right estimate. The proof of Proposition 2.2 is now
complete. |

REMARK 2.8. By Proposition 2.2(iii) it follows that for a classical solution of
(2.1) we can have u€C,(]0,T], D,] for any p > 0. Indeed, pick yEE
p > 0 and set ,

f(t)=ysint ?, T=]10,T];
then clearly f € L=(0, T, EYNC*(]0,T], E), and it is readily seen that
P flogann<e(d, py®  vie]o,T];

hence if p is large enough, we get by (2.11) that Au can blow up at 0 with
any power p = 0.

164
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The preceding remark motivates the introduction of the (possibly in-

finite) number

[fles:= su% {f“s[f]d’([r/z.r],E)"' ””|lf|lcqr/z,r1,£>}v
r €10.1]

pel0,wf, 6101, relo, T]. (2.12)

Then we have:

Corollary 2.9. Under hypotheses I, 11, III fix 3 €10,1], fel x €Dyop [ €

[0, T, E)NC%(0, T, E), and let u be the classical solution of (2.1). If
p = 0, we have u € C,(10, T}, D,) provided

xEDA(O)(]'—F"OO)s fELl/"(O,T,E), [flus.r <0 if ”E[O’l[’
[flesr<eo if pe[loef

(when p=0, L}/* stands for L*). In addition there exists Cig(p) > 0 such
that

”AHHCH(]O- 11, E)
< Clg(f"‘){”x”DMO)(l_“"w)

+ “f”LW(V”’(O,r.E) + [f]p‘s,r}
vielo, T]. (2.13)

PROOF. It is an easy consequence of Proposition 2.2(iii) and (2.12). O

3. Technicalities

We study now the integrodifferential problem (0.1): in order to find strict
or classical solutions, we treat (0.1) as a perturbation of the nonintegral
problem (2.1), and try to apply the results of Propositions 2.1 and 2.2. From
now on we will denote by v(z) any solution of (0.1) with assigned data x, fs
and by u(z) the corresponding solution of (2.1) with the same data.

In this section we prove some technical results which are the basis of the
existence and regularity theorems for strict and classical solutions. Let us
start with some heuristic considerations. Let v by any strict solution of

(0.1); then v also solves
v ()= A()v(t) = f(2)+Sv(t), 1€ 0,71,
p(0) = x,

17
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where we have set

So(t) = fO’B(r,s)u(s) ds, te[0.T]. (3.1)
Now we can split v = u+ z, where u is the strict solution of (2.1) and z is
the strict solution of

(1) — A()z(e)=5Sv(t), t€[0.T],

z(0)y=0;
hence, by (2.7) (with f=Sv, x=0), we have zZ(tYy="Tg(z), with g=
(1+ P)~1Sw, so that v must satisfy
o(6)=u(r)+[T(1+P) 'So](r), T[0T,
or
A o() = A(u()+ A(){ [T+ PY 54~ av}(r),  t€[0,T]
This is an equation of the form
Av = Au+ RAv, (3.2)

and it is of integral type, since the operator R is given by

Re () = A(r)[T(1+ P)""s4 %] (1)
= A(z)fo’e(f*“ﬂ” [(1+ P) "sas](s)as,  r=[0,T].

(3.3)
If we can solve (3.2), then we get for v the representation formula
V=A"1—R) '4u,
which, together with the formula (2.7) for u, represents v in terms of the
data x, f. To give sense to the above argument, we need some technical

lemmata which analyze the properties of the operators § and R defined by
(3.1) and (3.3).

Lemma 3.1. Under Hypotheses I, IV, V, VI let S be defined by (3.1). The
following assertions are true:

i if 00,1 and ¢ < C(J0, T Dy), then S$ & LY0, T, E) and there
exists Ciq > 0 such that

ol 0., 8y S C19fl_9+81|¢|1c9([0,z1. D) veelo, T];

ii. if 0<[B,1] and ¢ €Co(10.T], Dy), then S¢ €y (10, T, E) and
there exists Coo > 0 such that

150lle,_sq0.0.69F Caoli?lic,q0.01. ) vielo,T];

Parabolic Integrodifierential Equations

i, if 910,80 and $€C(0, T}, D), then Se e CF 40, T, E),
So(0) =0, and there exists Cpy > 0 such that

[S‘H CE (0.1, ) = Czluﬁt'”q;(]l.‘»~ 1. D4} Vie ]O, T] 5

iv. if #€Cy(10,T}, D), then for each €€10,B] we have S¢ €
C«(0,T), E), So(0)= 0, and there exists Cp(€) > 0 such that

HS‘?”C‘([O,:L ns Coa (M9l cyp.71. 2.0 vielo,T];

v. if §<[0,1] and 6 € Cy(10, T, D). then for each € €10, Bl we have
S¢€C(10,T), E), and there exists Cy{€) >0 such that

97 F SOl ez ey T t[Se) e S Cys ()@l e, q0. 71,00
vie 0, T].

Assume in addition Hypothesis VI, let 91, 1+Bl, and let $E
C,(10,T1, Dy) be such that

fTA(s)ti)(s) ds = IE»H(}+ fTA(s)gb(s) ds exists in E;

n
then we have:
vi. Se(7)= lLm f ‘B(t. 5)(s) ds exists in E V1 €10, T]and there ex-
=07 Yy .
ists Cyy > 0 such that
il e ) i
| So (£} < C24{r5'9||¢||qmﬂ‘ py+ 1t 1‘\};A(s)¢(s) ds HE}
vie0.T]:

vii. for each € €10, Bl we have S € C5(|0, T, E). and there exists Cys(€)
> 0 such that
)

[S¢]exqisza. b < Cas(€)

x{z-91|¢q|cmo‘ﬂ_m] + rB‘lnfO"A(s)¢(S) ds

vie]0,7T].
PROOE. it Let €[0,1). If 0 <r <t <T, we have
158(n)lie< [ Fﬁg 5110l ci0.0. 0
< P lidlic,0.c1. 007 (3.4)

which implies (1)-
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ii: It follows by (3.4) provided # €[8,1[.
iiimiv: Let 80,8 fO0<o<r<t<T, we have for each e £ ]0, B[

IS¢ (r)— S (o)l

Sf(:HB(r,s)A(s)'11|zE)1!A(s)¢(s)HEds
+ EHB(r,s)A(s)—l_ B(o,S)A(s)‘lu{E]“A(s)q;(s) | ds

ds

r d e (7 .
sc(e){fo (r_s)sl_;ssﬁ("“’) Lmz}ﬂ@lic,qo,q.m

vee 10,8, (3:5)

If § =0 we get (iv); otherwise, if 8 € 10. B[, by choosing €= — 6 we get
(3ii).
vilet0<t/2<o<r<tsT. By (3.5) we obtain

“Sq)(r)—Sqf)(o) le< C(f){t-a("" 0)‘8 +(r— U)Ef'g‘c_e}H‘i’”c,ao,:],p,;)
vee 10, 81,

which, taking into account (3.4), implies (¥).
vi: By using Hypothesis VII, we can write for 0 <np<t<T

LrB(r,5)¢(s)ds=fnt[B(t,s)A(s)_l—B(r,O)A(O)—I]A(s)cb(s)ds

+ B(2,0040) 7" [A(s)o(s) ds, (3.6)
n
so that S¢()=km, - ,;B(t,s)cp(s) ds exists. In addition, by (3.6) we
easily get
: ds
| So{r) ”E~<~C(E){L (t_S)1+gfﬁs‘g_E”(;b”CB(]O,z],D,,)
g-1 f*
+1 U;A(S)rp(s)dsug},
which yields (vi).

1)
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vi: f0<t/2<€06<r<is T, instead of (3.5) we can write

| s6(r)= 560} [ 1B(r9)AG) g A() o () e
LBt =l A
_ B(r,0)4(0) '+ B(0.0) 4(0) g,
x| 4(s)¢(s) |z ds
[ B(r,0)4(0) "~ B(0,0)A(0) e,
a0,

Now fix e €10, B[, pick v €l¢, Bl and set p=¢€/7- As
“B(r,s)A(s)—l—B(o,s)A(s)_l—B(r,O)A(O)-1+ B(6,004(0) gz,
- . (r—0)" sY }
‘“C(‘)‘m{ (oms) T F oms) )

the second term on the right-hand side of (3.7) does not exceed

(=) [ =g do el :
o {6—s5) =B (1011, D)
hence (3.7) implies
Hsu(r)_su(o)“E‘{c(e){r—e("‘ﬁ)ﬁ+tﬁ_9—e(?"—6)€}||¢||Cg(]o.rl~m)
()~ (r—o)" sup f°A(s)¢(s)ds) ,
sel/2.0170 £

and the result follows, since

U:A(s)tb(s)ds

i < HJ:A(S)qS(S) ds HE + et 0l e, 0011, >

voe[t/2,¢]. O

Lemma 3.2. Let £ 5<10,1f; then

-0  uniformlyin 110, T]
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PROOF. Fix ¢ €10, T). If # €]0,¢] we have

r e @l ds r e *"do
f"f————l_g—=f”f—i———n<frg~<~cege
o {rt—s) 57 o0 ¥i—o) :

whereas if # €[e, T, by taking « larger than 2 suitable w,, we get

—w(t—s) _
z’?f‘i__.l_?_gtﬂe““ﬂf‘ Eﬁ__LdSTT
o{t—s) 5" 0 (t—g) “s7

+_L_ff _ds
(t_f/z)n A'—E/Z(I,‘—.S')l_g

_ 20
<cTée ™22+ ?eg.s;ce‘g. O

Lemma 3.3. Under Hypotheses I, I1, IIT let 8 €10,1[, § €10, a]. Denote by
g=01+ PY Y% the unique solution of the equation g=+ Pg=¢, with P
defined by (2.3). If ¢ belongs to:

i G0, T, ED.
i L0, T, EYNCE(0, T, E),
iii. 30, T, E),

then g belongs to the same space.

pROOE. Parts ii and iil are proved in [1, Proposition 3.6] and [4, Lemma
A.2]. Let us prove i. For each ¢ € C,(10,T], E} define

ollg. o= sw;g re-rlo(r)] «>0, t€]0. T (38)

r t]

Clearly ||-!ls. ..« a0d {I*lic,q0.0.5) 8T€ equivalént norms in G(J0, 2}, E) (uni-
formly in 7 &0, T']). Moreover if0<rger<T,

r —m(rfs)ds
f#,—cr P < g E__— . 39
rle=| Po(r) |z crj;(rgs)l_aseﬂ‘i’“a,w, (3.9)

so that

rog Ui gy
|IP¢”9,¢0J‘€~C sup {rﬁf___m I|¢’H9.w,t VIE]O,T].
r E10.10] 0o(r—s) s

Parabolic Integrodifferential Equations

By Lemma 3.2 we get for large w

1Pollg. o <1/20¢llg.w, VIE lo, 7],
so that (1+ P) Lexists in £(Cp(10,7], ED VI S 10, T1. o

Leruma 3.4. Under Hypotheses I, II. I let T be defined by (2.2). The
following assertions are true:

i if 00,1, §€10,a], and ¢ E C,(10, T, E)N C*(0,TLE), then T¢
e Cch0, T1, E)nCi(0, T, DHNC! -6(10, T], E) and T$(0)=0;
i if 9 €C(10,TLE), then T € CcY([0,T1L E)Vye0.1[;
iii. if §€)0,a] and ¢ € C¥[0, T} E) with ¢(0)=0, then To €
CL3([0, T), E)YNC({0, T}, B,) and (T$)(0)=To(0)=0.
PROOE. ii-ii: By [1, Proposition 3.7} and [4, Lemma A.3].
i: Again by [1, Proposition 3.7] and [4, Lemma A.3] we get Tpe
ch3(o,T), En ¢%(0,T), D). The fact that TeeC4(10,T], E) and
T4 (0) = 0 can be shown as in the proof of {1, Proposition 3.7(ii)]. O

Lemma 3.5. Under Hypotheses T_VT let R be defined by (3.3). The following
gssertions are Irue:

i if 6B, and ¢ eC,(10,TL E), then for each ¢ <10, B[ we have
Re&C,_(0,T], E), and there exists Cyg(€) > 0 such that

R (2) |z < Czs(e)fe_eﬂff’“cs(]o.:],E) vie]0,T];

i if 80,8l and 6 GO0, T} E), then RO E CcB=9~[0,T], E),
Ré(0)=10, and there exists C,, > 0 such that

| Rbli s~ neqo. 1. £y < Carll@llcyq0.00. B> vielo, Tl

iii. if ¢ €Co(10,1), E), then for each €€ 10, B[R <= C"*[0,TY E) we
have R¢(0) =0, and there exists Coy(€) > 0 such that

(1ROl cerogo, . £y Co(olic 0.8y YIS lo.T1;

iv. if §<[0,1] and 6 € G0, T, E), then for each €< 10, Bl we have
R C 0T, E).

Assume in- addition Hypothesis VII, let #€(1, 1+ Bl, and let ¢€
Co(10, T, E) be such that

ftcp(s)ds:: lim qu:(s)ds-existsinE;
1] 10" 4y
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then we have:

v. for each €€10, B[ we have Ré¢ e <" *(0,T), E), and there exists
Cyol€) > 0 such that
A
e

1R ()< ol - lnmrt | [#() &
viel0.T].
proOE. Let #<[0,1] and :pECH(]O,T],E). By Lemma 3.1, for each
¢ € 10, B[ we have
SA %
{fEC‘([O,T],E):f(0)=O} if =0,
= CE(]O,T],E)n{fecﬁ—ﬂ([o,f],E):f(o)so} if 610, Bl
C‘(]O,T],E)nca_ﬁ(]o,ﬂ,E) if ge[p.1l.

(3.10)

Hence by Lemma 3.3, 1+ P)‘lsA‘lqs has the same properties with €
replaced by e A a. Thus by Lemma 3.4 we get for each e €10, Bi

T(1+P) 'S4
{fEC”\"‘([O,T],DA):f(O)=0} if =0,
CE"“(]O,T],DA)m{fec“’—““([o,rl,DA):f(0)=0}
e it 60, 8L
c<~+(10, 71, pIn{f cct~8([o,T], E): f(0)=0}
it 8<(B,1l.
(3.11)

This in particular implies iv. Next, by Proposition 22ii the function #=
T(1+ P)"'S47% is the classical solution of

u’(r)—A(t)u(r)=[SA“lqb](t), T<10,T],
u(0) =0, (3.12)
so that by (2.11}
llbe(t)NE:HA(r)u(r)HE
<C(e){rNSA $lne.r e

184 Wlicqrzn e T £ [SAqu’»’] cf(rr/z.tl.m}
(3.13)

vie 10,T]-

Parabolic Integrodifferential Equations
Hence by Lemma 3.1i-v we deduce that

[Re(t) iz < (e}t Cliollcya0.0. 81 vie]o,T];

this proves i. In addition by Proposition 2.1ii, if # €0, 8] the solution u of
(3.12) is strict, since 5S4~ is Holder continuous and y,=0 in this case.
Therefore Proposition 2.1v yields

. {c““([o,r], Eyncr*([0,T], D) Ve elo, Bl it #=0,
Cl"ﬁ‘G’A“([O,T],E)F\C‘B"”"“([O,T],DA) it 9<10.8[.
and by Proposition 2.1vi Au= R¢ satisfies
IRl cenago. i By S C()ISA Wl o ey VE elo, gl if #=0,
| R\ cea-orneqo, 1. 5y S ClISA7 SN sy IS Jo. 81

This, together with (3.11), implies ii and iil.
Let us prove v. By Lemma 3.1vi—vii we have Vr €10, T]

I [s4 _1¢](f)”5 < C{tﬁﬁallqﬁllc,(}o.:]. T tB_l“ J:*i’(s) ds

J
el

ve<]0, B[

[s47%] coqemnm < C(E){I_B!Ifbuq(l&xl, 5t 3‘8'6—1\

In particular S4 %€ L0, T, EYNCY(0,T], E) Ve 10, B, so that again
u=T(1+ P) 'SA ' is the classical solution of (3.12), and Au= R¢ satis-
fies (3.13): consequently we get for each e €10, B{

ds
E

[Re(1) < ({1 Iollcnam* 1[5

f(:q)(o)da

+eft

Uoqu(o) do

E} vie 10,71,

which easily implies the result, since

e

test? Wse]0,f], vielo,T]. O
E

|
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Lemma 3.6. Under Hypotheses I-VI. Let 8 €10,1{. The following assertions
are true.

i. (1- R)~! exists and belongs 1o L(C,0, T EW:
i. if $€G(0.T), E) then there exists Cyq > 0 such that

n(l - R) —1¢“ C4(10, 11 ED = C3G”¢HC9(10. t], E) vtE ]0’ T]

PROOE. If ¢ €C4(10,T1, E), then by Lemma 3.5
ce([0,T],E) Vveel0,Bl if 8=0,
rRee{ CF %[0, T), E) it 6<]o.B8l,
Cy_ {10, TL E) if 9e[B.1l

so that in any case Ro € C(10,T], EY. we want to show that if « 1s
sufficiently large,

IRSlg. . <300, 0 vie10,T]. vo e C(10.T], E).
(3.14)
where ||-llg .0 18 defined in (3.8); this will imply both i and ii. Now if
O0<r<t<T, wehave by (3.13)
rle~= | Ro(r) |
< C(€)"8€-W{ rHSA Sl ey T 1S4~ Bl cgrs2. 1. B9

+re [SA ) cegrrzn. E)}

= (1)+ (1) + (110).
By Lemma 3.2
r 5 p—w(0—5) Jo
N <e(e)rf e e ¢ do ot
(M <c(e)r’ [ Lb_ﬁﬁﬁ 191600

- ,, —m(cr—s)ds
< c(e)rﬁ_lfoa"’{oaj; (Z —s)l_'es"} do|[®llg, ..

<o(Diidlig,u. 3 @
In order to estimate (IT) we have, again by Lemma 3.2,
(IT) = C(‘-)reewri]SA—'1¢Hc(1r/2,r].f)
v e @979 ds
<e(e)2” sup {00 r——“}llﬁbli @
) §elr2r] j(') (U_S)i Bse 80,1

<o(MWlollg . a8 w—>®.
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On the other hand concerning (I1I) note thatif re]0,f]and r/2 €s< O <7
we have

N[sa=%](0)—[s47%](s)
(o—s5)°

. g ef“’(c'p)dp
<c(e)r® Hfs (G_p)l-ﬁpﬂ
5 -49(5—9)d
+ —w(o—5) _ < __e_,,,___.—R—-
e (6—5) j{; (S_Fp)l-t—e—ﬁpe}“d)”t?.w.t
RRY: e/B -5 —wt 1-</B
-{:C(E)re rﬁ LG___S,)H_ f _,_e__..—d_g—é-
(r/2) o E7(r/2)
. 5 —w{s—p) g4
+(0‘_S) 23{531; _(:e-:_p?:_—_%ﬁ]} Nelig. .

<c(e)o—s) (e FroD}liolss, o @7

This implies

g+e

cle)r

}E/ﬁﬂlﬂ </B)

1) <o(lidlyr 8 @00 (3.18)
By (3.15), (3.16), (3.17), and (3.18) we get (3.14) and hence the result. -

REMARK 3.7. By Lemma 3.6 it follows also that (1— R) '€ £(C(0, 1. E))
and that there exists Cy; > 0 such that

“(1 - R)d‘pﬂa{o.:], 5nSs Cilldlcqoney YOS ¢([0,T), E), V1 €lo,T].

4. Strict and Classical Solutions
We are now ready to prove the main theorems of the present paper. We
start with the existence result for strict solutions.
Theorem 4.1. Under Hypotheses I-VI fix §€10,a] and lei x € Dy fe
C3([0, T, E). The following assertions are true:

i. if a strict solution of (0.1) exists, then the vecior Y, defined by (2.6),
belongs to D,y -

ii. if, conversely, yo €D oy then there exists a unigue strict solution v of
(0.1), which is given by

o(1)= (1) '2(r), €[0Tl (4.1)
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where z ={1— R) Yu, i.e. z is the unique solution of the equation
(1)~ (R)(1) = A()u(r),  1€[0.T],
and u is the strict solution of (2.1). |
Assume in addition y, Ef);_(or). Then we have:
iii. there exists Cy > 0 such that

W'l cqo.n. By T 14l cgo.0. 2 +18vll ¢ go. 1. By

< Co{14@ %l + 1 flctqo 5}

iv. o', Ave C** 410, T], E) Ve €10, Bl

v. if €e€]10,Bl then o, Ave C* (0, T], E) if and only if ¥
D8 A€ o0); _

vi. if e€10, 8] and yo € Dy (8 N € w), then there exists Cys(e)>0 such
that

vie]0,7T];

o'l cancqo,m ey NAvllesneqon. gy T I8¢l eeo. 1. B

< Ciy(){ 4@ 5]l + 1 llcrgoner+ 1Doll by e

vre 0, T].

pROOF. i: If v 1s a strict solution of (0.1), then Sv is Halder continuous and
Sp(0)=10 by Lemma 31iv; hence v is a strict solution of (2.1) with f
replaced by f + Sv, and i follows by Proposition 2.1i.

ii+ The heuristic argument at the beginning of Section 3 is now quite
justified, so that if v solves (0.1) then necessarily v is given by (4.1) with
z=(1— R)™'du, where u is the strict solution of (2.1) (which exists by
Proposition 2.11i). This in particular implies uniqueness. Conversely, let us
show that the function (4.1) 1s in fact the strict solution of (0.1): indeed, as
Au e C([0, T}, E), by Remark 3.7 the same is true for z, so that v =4 e
C([0, T, D,). Next, we have

p=A'z— A~ Y[Rz + Au]=T(+P) SAT'z+ 1 (42)

as SA-'zeCY0, T}, E) Ves 10, 8] and SA~ 1z(0)= 0 (Lemma 3.1iv), we
easily deduce by Lemma 3.3iii and Lemma 3.4iii that T(1+ P) iS4z €
cLane(0, T, E)NCoM (0, T], D,) Ve & 10, B and [T+ Py 1S4 12)(0)
= 0. Thus (4.2) yields v =C Y[0,T), E), v(0y=u(0)=x, and

v = [T+ PYT'SA Y|+ w=AT(1+ PY lSAT iz + SAT — Au+ |
— Av+SA"z+ f=Av+Se+f.

— - s
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This proves ii.
iii: By Remark 3.7

-1
4ol cqo.n.m = (1= R) " Al g 5 < Cl4¥lcqo.n.5)
vie o, T, (4.3)
and iii follows by (2.9) and Lemma 3.Tiv.

v_v: We know from the proof of ii that T(1+ P) 'SA7 1z <
cLEr (o, T1, EYNC3 (0, TL D) Ve €10, BI; hence the results follow by
(4.2) and Proposition 2.1iv-v.

vi: We have

Aol coreqo. o, By~ l2lies~eqo.11. EY S IRzl et Aeqo. o1 By + | Aull e rego. 1, )
viell, Tl
on the other hand by Lemma 3.5iii and (4.3)
Rz ceneqo. . EY S Cle)cqo.n.m0< c(e)|Aullcqo, .2y YIE 10,71,
so that
Avll csaeqo.n, BYS C{e)|Aullcsreqo.n. By vie |0, T]. (4-4)
Consequenily, recalling Lemma 3.11v,
o'l s reqo. o, B3 S i1 Avll e8 ~<qo. 0, By +1Sel careqo, 1. £ +fllerqo, e B
< C(ﬁ){ﬂA””c*‘M([o,:], 5+l E)} vte0,T].

(4.5)
The result follows by (4.5) and (2.10). m|

REMARK 4.2. The results of Theorem 4.1, except for the representation
formula (4.1), are essentially known [4, Theorems 2.1, 2.2): there is some
difference in parts iv—v, because of the slightly different assumptions on the
smoothness of B(#, s), as we already pointed out in Remark 1.1.

Let us study now classical solutions of (0.1). First we consider data x, f
such that the classical solution u of the corresponding nonintegral problem
(2.1) is in C,(10, T'1, Dy) with 1 < [0,1[-

Theorem 4.3. Under Hypotheses [-VI, fix p<l0,1], 610, o], let x€
Dyl — 1, w), and let € IVH0, T, EYN C¥10,T1, E) be such that
[f1,.5,7 < oo, where [-1,.5.7 is defined in (2.12) (if n=0, LY" stands for
L®). The following assertions are irue:

i there exists a classical solution v of (0.1), which is given by (4.1) with
7= (L— R)™Au, where u is the unique classical solution of (2.1);
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ii. such a solution belongs to C,(0, T}, D,) and is unique in this class;
it there exists Cy () > 0 such that

Wle,m.0.6F 42l 0.0, 59 +I5ell ¢, gy w0t B3

< C34(F'){“x”1),'m,(1—p,oo)+ Nl ey T [f],u.a,:}
vielo, Tl
iv. o Ap € CPA(0, T), E) Ve €10, BL.

pROOF. i-ii; if v€C(0,T], Dy) is a classical solution of (0.1), then by
Lemma 3.1i-v we have Sv € INO, T, EyNC(10, T]. E) ¥Ye €10, B[; hence v
is a classical solution of (2.1) with f replaced by f+ Sv, and again the
argument used at the beginning of Section 3 applies. Thus v is given by (4.1)
with z = (1— R)™4u; note that 4u € C,(10.T], E) by Corollary 2.9, so that
:€C(0,T] E) by Lemma 3.6i. This in particular implies uniqueness in
C,(10.T]. Dy On the other hand, the function v given by (4.1) is in
C,(10.7TL D ) and is in fact 2 classical solution of (0.1): indeed, (4.2) stll
holds: in addition, by Lemma 3.1, S4 -1 satisfies (3.10) with 8 = p, so that
by Lemma 3.3 and Lemma 3.4 it is easily seen that T(1+ PY'SA 2z
satisfies (3.11) with 8 = p. Consequently i and ii follow by (4.2) as in the
proof of Theorem 4.1ii.
iii;: By Lemma 3.61

48] q0.0.5= (1= R) " aull e .. < CllAMl .0 81

vielo,T),

and iii follows by (2.11) and Lemma 3.1ii, i, or 1v.
<v- It also follows by (4.2) and the properties of T(L+ P)" 'S4 'z and
given by (3.11) (with ¢ = z) and by Proposition 2.2iv. O

We consider now the most general case which can be treated by our
method, ie. data x, f such that the solution u of {2.1) is in C,(10, T E)
with g €[1, 1+ B[; we need in this case the additional Hypothesis VIL.

Theorem 4.4. Under Hypotheses I-VI and VII, fixpe1, 1+ 8. &€ 10, 2,
let x €Dy, and let f € LNO, T, E)N C¥(0,T), E) be such that [fl, .1
< oo, where |}, 5.7 1 defined in (2.12). The following assertions are lrue:

\ there exists a classical solution v of (0.1), which is given by

o(t)=u(t)+4() w(2),  1<10,T] (4.6)
where w=(1— R) 'RAu, i.e, wis the unique solution of the equation

w(t)=[Rw](2) = ()] T(1+ Py lsal(n),  relo, Tl
and u is the classical solution of (2.1);

——————————————
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ii. such a solution belongs to C,(06, T} D,) and is unique in this class;
i, there exists Cys(p) >0 such that
o', .0, + 140008 +{iSvlic, .8

< Css(ﬂ){nxﬂs"” N . By +[f]p.a,r}
iv. v, Ave C* (0, TLE) Ve & 0, 8.

v:e]0,T];

prOOF. i-ii: If vEC(0, T1,D,) is a classical solution of (0.1), then_ by
Lemma 3.1vi-vil Sv &€ MO, T, EXN C«(J0,T), E) Ve & 10, B1; hence v 15 2
classical solution of (2.1} with f replaced by f + Sv. Thus by Proposition
2.2i

o(1) = e4Ox + [T(1+ P) T (f+ 80 - P(-.0)x)] (1)

Zu()+H{ra+ By sol(e), =0T

which implies
Av = Au+ RAv.

Now we cannot deduce (4.1), since by Corollary 2.9 Au € C,(10, T} E ) with
51,1+ B[, and (1- R)~ ! does not operate in this space. So we use a device
of Priiss [11, (39)]: set
w = Av — Au; (4.7)
then w sofves
w= Rw+ RAu. (4.8)

We claim that the function RAy belongs to (10, T} E) with a suitable
# =10,1[. Indeed, smce u solves (2.1), by Lemma 3 5v and (2.13) we have for
each e €10, B{

[RAGN(0) s < CLO 1wl o

[lw)-r@las] )
< [ixlie 1 flpes U ed

+f1

+ o8 ()i il 1 . 5} veeloTh
(4.9)
By (1, Theorem 2.1] we have
llu() < C{qug+'ﬂf“f)(o,r,}:)} v: <10, T4, (4.10)
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and consequently

”[RA“](t) HE‘*<~ C(E)IE_#{”x”E"' HfHLi{D,r.E) + [f]n,s,r}

vec]0,8[, vie]0,T].
Hence our claim is proved by choosing # =p —e with any e€]u—1, 8[.
Thprefore by Lemma 3.5 we can solve (4.8) in C, (10, T]. E), Le., there
exists w={(1—- R)"'R4ucC,_[(J0,T], E) Ve€]p—1, B[; in addition, by
Proposition 2.2iv and Lemma 3.4iv, we have w € C3" (10, T], E) Ve €10, B[.
Hence if € C,(10.T], Dy) is a classical solution of (0.1), then v is given
!)y (4.6); this in particular yields uniqueness in C,(10, 7'}, D). Conversely it
is easy to verify that the function (4.6} is in fact a classical solution of (0.1):
indeed we¢ have

v=u+A lw=u+T(1+P) 'S4~ w+T(1+ Py 'Su,
so that by Lemmata 3.1, 3.3, and 3.5, v(0)=x, v € C'(10, T), E), and
= Au+ f+ AT(1+ P) "SA~'w+ SA 'w + AT(1+ P) ™ Su+ Su
=Av+f+SA 'w+Su=Av+Sv+f.
Note that Sv = Su + 5S4 ~'w makes sense because of Lemma 3.1vi, i (since
weC,_(0,T], E) Yeclu—1B8). As u€C(0,T]D,) and we

C“T.‘.(]O’ T), E), we have v € C,(J0,T]. D). Parts i and ii are proved.
iii: We have by (2.13), Lemma 3.6ii, and (4.9)

14l e 0.0, £y < 148l 0,0, 5 T Wi, g0.0. 5
< (e + 1A 20 + [ Lo +IIRAullG, 0.8

<Cl){lixllg + Wl 2o ey T [ Fluse )

ves]p-1,8[, vrel0,T]
Next

Wllc,go.n. 00 < l40lic, 0., 8+ 1Svllc 0., 59+ [flas. ViEl0,T];
on the other hand, by Lemma 3.1vi, i and {4.10),

-1
HSUHCM(]U,Q,E)@”Su”CF_B(]o.z],E)*”SA Wley, o gyvo0.2l. E)
i, I
S,C{”AUHCP(]GJ]_,E)'E'”L [u (s)—f(s)] dg”
E

+ HWHC#_((]DJ],E)}

5 C(E){“x”E . mt [f]p,s,r}

Vee]p—1,8], vre]0,T],
and 11 follows.

~~y
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iv: It follows by the properties of u (Proposition 2.2iv), those of w
established above, and those of Sv = Su + S4 ~ly (Lemma 3.1vii, ¥). O

REMARK 4.5. The representation formulas (4.6) and (4.1) formally coincide,
since by (4.6) we have

v=1u-+ A-l(l—R)’lRAu=A-1(1—R)‘l[(l—R)Au+RAu]

— A7Y(1-R) 4y,
which is (4.1); on the other hand we have seen that (4.6) makes sense
whenever u € C,(10,T], D) with p<1+ B, whereas (4.1) requires 4 <
C,(10,T], D) with s <1,

5. The Constant-Domain Case

In this section we study the problem (0.1) under the additional assump-
tion that the domains Dy, do not depend on ¢: this allows a considerable
weakening of the smoothness requirements about {A(}}- Namely, we
replace Hypotheses II and 111 by:

Hypothesis TV. D¢y = Dy, V1 €0, T

Hypothesis IIT". Hl—A(r)A(r)#l”g(E)g Lt —r|® ¥t,r€[0,T] for some
L>0, a€10,1L

These assumptions guarantee the solvability of (2.1): see Tanabe 14,
Sobolevskii [13], and Acquistapace and Terreni [2].

The method for solving (0.1) is always the same: we treat (0.1) as a
perturbation of (2.1) and use the sharp existence and regularity results
proved in [2] for the constant-domain case of (2.1). In this way we will
obtain results for (0.1) which are completely analogous, even from the
formal point of view, to those of Theorems 4.1, 4.2, and 4.4.

The results for the nonintegral problem can be summarized as follows.
Define for any ¢ € L'(0, T, E)

To(1)= fo GumnAng (s)ds,  re]0,T], (5.1)

P¢(z)=f0’P(x,s)¢(s)ds, rel0,7T1, (5.2)

where

P(r,5) = [1- A(0) A(s) M A(s)e 91, (1,5} €A (5.3)
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[A is defined by (1.1)]. From now on these definitions of T, P, P(t,s)
replace (2.2), (2.3), and (2.4). Note that again P(, 5) satisfies (2.5).

Proposition 5.1. Under Hypotheses I, II', and III' let the operators
P(t,5), P, T be defined by (5.3), (5.2), and (5.1); then all assertions of
Proposition 2.1 and 2.2 are true, provided in the former case we redefine
the vector y, by

yor=A(0)x + f(0). (5.4)
From now on, the definition of y, by (5.4) replaces (2.6).

PROOF. Concerning the assertions of Proposition 2.1, parts i, ii, iv, and v are
proved in [2, Theorems 4.2, 4.3, 4.7]; part iii is proved in [2, Theorem 4.4]
only when ¢ =T, but the general case can be shown quite similarly. Part v
can be obtained by a more detailed review of the proofs of [2, Theorem 4.7
and Lemma 3.5(vi)]. Concerning the assertions of Proposition 2.2, parts i, il
and iv are proved in [2, Theorems 5.3 and 5.4] (the assumptions of f are
slightly stronger there, but this is not really used in those proofs). A special
case of part iii, namely when x& Dyq(f,00), #€]0,1 and f =
C8({0, T, E), and only when ¢ = T, is proved in [2, Theorem 7.5]; that proof
can be easily extended to any 7 € 0, T'] and to general data x, f. O

Let us go back now tc the problem (0.1). The heuristic argument at the
beginning of Section 3 can be repeated once more, s0 that we are led to
analyze the operators S, defined by (3.1), and

R=AT(1+P) 'S47%, (5.5)

where 7 and P are defined by (5.1) and (5.2). Clearly for § Lemma 3.1
holds unchanged, whereas about R we have first of all:

Lemma 5.2. Under Hypotheses I, LI, III' let the operators P, T be defined by
(5.2), (5.1). Then all assertions of Lemmata 3.3 and 3.4 are frue.

PROOF. Parts i and ii of Lemma 3.3 are proved in [2, Lemma 3.4(ii)—(¥)],
whereas part ii is proved in [2, Lemma 3.4(iv)] under slightly stronger
assumptions (but the proof still works under the present ones). Parts i, ii,
and iii of Lemma 3.4 are proved in [2, Lemma 3.5]. i

Since Lemma 5.2 vields exactly the same conclusions as Lemmata 33
and 3.4, it is clear that the operator R defined by (5.5) satisfies the same
properties as stated in Lemma 3.5; similarly (1- R)"! satisfies the proper-
ties stated in Lemma 3.6 and Remark 3.7.

- =
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Thus we can conclude with the following theorem which summarizes tk}e
properties of strict and classical solutions of (0.1) in the constant-domain

case.

Theorem 5.3. Under Hypotheses I I, I1r, Iv, v, VT let the operators P, T
be defined by (5.2), (5.3). Then all assertions of Theorems 4.1 and 4.3 are
true, provided in the former case we redefine the vector y, by (5.4). If in
addition Hypothesis VII holds, then all assertions of Theorem 4.4 are true.

pROOF. Exactly as in Section 4. m]

rEMARK 5.4. The constant-domain version of the result of Theorem 4.1,
except for the representation formula (4.1), was essentially known, although
in a slightly less precise formulation, which howeve_r allow.s somewhat
weaker assumptions about { B(f, 5}}: see Lunardi and Sinestrari [10] and 4,

Remark 2.3].

6. An Example

The following example has been considered (concerning only strict
solutions) in {4, Section 5]. Fix n > 2,and let QCR" bea bounded open set
with boundary 9% of class C?. Let A(t,x, D), T(z, x, D), B(t,s. %, D) be
differential operators respectively defined by

"

n
A(I':va): Z aij(!"x)Dx,ij_F Z bi(tvx)Dx,-+c(t’x)I’
y=1 i=1

(1,x)e[0,T]xQ, (61)

T(t,x, D)= Y Bi(t,x)Dxi+y(r,x)I, (1,x) [0, T]x 3%, (6.2)
i=1
B(t,s,x,D)= Y pi(t,s5,x) D+ g(t,s,x)1, (2,5, x) €AXQ,
i=1 (63)
where, as in (1.1), A= {(z,5) €10, T}?:0<s <t <T}; wemake the follow-
ing assumptions:

da;; 9b, 3c
LR TN T T

aij("x)’bi('vx)’c(':x) ECL“([(LT]’C) (6'4b)

e ([0, T1x%,C), (6.42)
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with norms independent of x, where a € ]0,1[;

n

Re I a,(r.x)§&> NP VEeR", V(1,x)<[0,T]xQ,

=1
where N > 0, o
B.veCY[0,T]x4Q,R), (6.6a)
Bt ) (e, ), G ), G (1) 2 CHaR) (6.60)

with norms independent of ¢,
B(-,x),¥(-.x) eCt*([0,T],R) (6.6¢)
with norms independent of x;

v(£,x)20, X B, x)r(x)>0 V(r,x)e[0,T]xd%,
=1

(6.7)

where #(x)= (¥,(x),..., 7,(x)) is the exterior unit normal vector at x € a%;
P;,q: & X @ — C are measurable functions, (6.82)
p:(t.5.-).q(1,5,-) €CHL,C), (6.8b)

L Ip(rs ) i+la(t o0 <K= it s x)<axs

Y | p(t,5,x)—plr.s, x) | +1q(t, s, x)—q(r. s, x) | < H._(t‘"_‘")._
i=1 € (r_s)1+<*ﬁ

vec]0,8], ¥(t.5),(r,s) €A with r <z, (6.9b)
where K, H.> 0, B €10,1[.
We consider the integrodifferential problem
u, (¢, x)—A(z, x, D)u(t,x)—fOIB(t,s,x, DYu(s,xYds=f(z,x),
(r,x)e[0,T]x,
T(t,x,DYu(t,x) =0, (t,x)=[0,T]x 98
u(0,x)=y¢(x), x€8 (6.10)
with prescribed data f, .

Parabolic Integrodifferential Equations

Set E = C(8), ||ulj s = supy e glu(x)]; define for each 1€ [0, 7]

DA(:)={uE N H»(Q):

g €11,00(
A(r,-,D)ueC(ﬁ), T(z,-,D)u=00n 39},

A(Du=A(t,-, D)u, (6.11)
where H%9() is the usual Sobolev space. Next, define for each (7,5) € A
Dyoy= {#€C(@): B(2,5,-, D)us C(D)},
B(r,s)u=B(r,s,-,D)u_

In [4, Proposition 3.4 it is shown that there exists @ >0 such that the
operators { A(f)—wl }rero.m folfil Hypotheses I, II, and III of Section 1;
moreover it is easy to see that { B(z, 5 esea and {A()— @l }epom also
satisfy Hypotheses IV, V, and VL. When in addition Hypothesis VII is
required, we will assume the following:
n (S _ U)€

lp,-(t,s,X)-pi(t,cr,x)l+1q(t,s,x)-q(t,cr,x)Ing(—t_—;)—l;:g
i=1

i=

vee]o, B, v(1,s5),{t,0) €A witha <s. (6.13)
By the results of Acquistapace and Terreni [3), we have ¥¢ €[0,T]
Dyn= DA(t)—c.:I = C(ﬁ)

and for each 8 €10,1(
c?(Q) it 510,50,
{ueCe(Q):

sup{ o™ u(x)—u(x —oB{x)!:

xedR, 6>0, x—af(x)ER} <) if 8=1,
{uecl‘zﬁ—l(ﬁ):

Y, B.(z,x) D u(r. x)
i=1

+yl(e, x)ulr,x)=0 Vx& a2)

DA(:)('SaOO) =

i selbil
(6.14)
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where B(x) is the vector { B(x),.--, B,(x)) and the Zygmund class ol () uniformly in x, i=L....n, i and only if the function g+=f(0,-)%
is defined by A(Q, -, D) satisfies
_ _ + -1 + 2 AUF A if &A€E 0,l[s
C*,I(Q) — {HEC(Q)ISUP{ |u(x) u(y?x—-uﬁ(x y)/ )I L x, ¥, gGC -_(9) If ] 2
Y geCx(Q) and

x;yeﬁ,xa&y}<m};

cup{ 0~ g(x)~ gl — oB(x))|: x € 92 0> 0, ¥~ o) < 0} <o
if 8ne=1,

it is a Banach space with its natural norm. N

Let us apply the results of Section 4 to the problem (6.10): we will just gechen 9-(Q) and

consider strict solutions and the most general case of classical solutions, i.e.

the case treated in Theorem 4.4. Y B0, x) D, g(x)+ ¥(0, x)g(x)
i=1

: Theorem 6.1, Assume that (6'_1)_(6_9) hold, and let {A(2)}, {B(1,5)} be + i %(O,x)Dx,z{;(x)+ %(O,x)¢(x)=0 on 9%
i defined by (611) and (612). Let feC(0T}x®) and ¢ < oo :
; nqeuym[HZ.‘?(ﬂ) be such that if 8Ae 13,1 (6.15)
: F(-,x)eC?([0,T].C) with norm independent of x, v. if e€10, Bl and g= £(0,)+ A0, -, D)¥ satisfies (6.15), then
| A(0, -, DYy eC(R) and r(o,-, DY)y =0 on 3%, sup l.vr(' %) nc“““(tﬂ‘ﬂﬁ‘ sup_“A(-,x, D)v(-,x) HC"’“([O,T])
i where 8 €10, a). Then: xef xel
| i. the problem (6.10) has a unique strict solution v € CY([0, T]X Q), such + sup frB(- .5, x, D)o(s, x)ds \ sae

that cealdo cEAeqo. T

D,v(s,) €C°(2.€) Cle){igllcano + bl g}

if 8Aee]0.3l,

Cle,p){lighe@* [§ll graa-mi@y} P €101
if 8Ane=1%,

() glaasna s+ Wl
if dAne e]t1f.

with norms independent of t, Yo €10,1[, i=1,....n,
A{-,-, D)oec([0,T]x8);
ii. '
1o ]l cqo. =@y + ”A( » 7 D) Hcao,n xT)

_]:B(-,s, ., DYo(s,-)ds

-+

cwo.Tm pROOF. Parts 1, ii, iv are proved in [4, Theorem 3.5]. Estimate 11 '%s
: ven : ion 4. Let us prove v: 1t 18
e ; - .y an easy consequence of the results of Section .
é_C{Hf”C([O.T]xQ)'Fji%”f( » %) lergo.rp + 11 4€0, aD)#/qu}, O ficiont 1o estimate lIA(Us':D)“*f(O"); ,4;|l§;(0)(3,\%w),3\:]1;ere w:
- ce [4 oposition 3.
iii. the strict solution v satisfies in addition [(d/dr)A(t) 1]t=0A(g)zPatsIolves (see [4, proo S abp Ny
0,(-, %), D,p(+,x), A+, x, D)u(, x) €C* (10, T]) 4(0,-. Dyw=F= L =7 (0. ) DDk ¥ Eﬁ(o,-wxf“m(w

j=1 _
uniformly in x, Ve €10, Bl i =1,..., m; - in G

iv. if e €10, Bl the strict solution v satisfies n
. =G=— (0,)D ¢—v(0.-)y on 3.
o(-, %), D,0(-. %), A(-,x, D)u(-, %) €C*A ([0, T]) £, Py =G=~ L K0Py
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B0, TT) wniformly in X

Now
Fe n H2'q(ﬂ) . . . D .
, Ge - il o,(-, X) Dx!_v( ,x), A(-, X, yo(-, x) &
g€ Mool qer}]m[H Ve 39), Ve & [0, BL i=L-en M
forward consequence of the results of Section 4. O

and by the well-known esti
estimates of o . .
of Agnon, Douglis, and Nirenberg [5] (see pROOF. 1152 straight

also Tri .
riebel [16, Section 5.5.2]) we have for each ¢ = ]1, o[
(6.10) with Dirichlet boundary

6.3. We can consider the problem

”W 2.9 =
“H (9)<C(4){“F”L4(9)+||g]|H1-1,‘,_,,(m)+”w“ } REMARK
<c(g) Y]l y2acq)- L conditions, i.e. T(Z %, D)= I. In this case e have (Lunardi {91
Hence by (6.15) and Scbolev’s theorem we easil Dyn=f{4E C(Q): ulpo= 0} Vi€ {0, T1
O o y get and V1 €[0,T] _ ,
HW”J‘D,‘,({,,(SAE )< Cle, )9l ey if 6ree]0,i] {uECZB(Q):u]m-':O} if SE]O,%[,
200} TN [ o l-p Y . * — s
(] @ VPEJ0I[ if SAe=1, Dy(8.0)= {uec*~1(sz):u1m=o} if 8=1%,
and the . Iﬂ o H—.n/[-—ztﬁf\c)l(ﬂ) if 8/\ EE]% 1{ {uecl.ls—l(ﬁ): u|39="'0} ]_f 8&]%,1[.
Sult tollows. * ?
Theorem 6.2. Assume that = REMARK 6.4. The problem (6.10) can be seitled also in E = LE(Q), 1<p
; {A(Y. { B(1,$)} be defi d(6.1)—(6,9) and (613) hold, and I < oo; then we can choose as B(1,5, % D) a second-order differential
! and let £10,T]X @ = © ge by (6.11) and (6.12); let 4 € C’([O T1x ﬁe t operator with coefficient of class C2. In this case it is known (Grisvard (7}
1y ec(@) v e such that : ) Triebel [16, Section 4.3.3]) that
' t€10,T . =
[f] ] ]’ f( ,x) ECS(]()’T]) unzformb: nx _DA(”-—LP(Q) VtE[O,T],
- ’ and, vVt €[0,T),
cor= s (o] w10 la o) L
X ppr(Q) i 8 E]O’E(“ 5“,
+ ta su _ -8 .
<o z/zgag,.g(r o) Hf(f,')—f(g,.)“qﬁ)]} DA(,)(S,OO)-': {uEBDZOB'p(SZ):I'(r,x,D)u(x)=0VxEBS2}
; . 1. 1yl
: where 8 €10, al, p€[0,1+ B[. Then if & E] i’(l+ E),l[,
"; i. problem (6.10) has a classical solution v which satisfies the Besov-Nikolsky spaces Bz (%) (s> 0, pel,o0D are defined by
: sup M A(¢, - -4y LP(R"),
| 1e10.7) 14(t, . D)oz, ) e < o0 Ho: ¥ (®”) . P
: . and is unique in this class; f\i%fw[t"[u(x + rel)“u(X)] 'i, de<oo,i=1,..s n}
7 g selo1l
fnqu(t ,)” 7+ M 7 b 2
A8 ) et 14, -, D M os cue LP(R" £ 4 te’
)U(r’ )”C(Q) | B:ﬂ,p(ﬂ) — u’lﬂ L ( )3 fg%jmnl [u(x € )
+u(x—-1‘e")—2u(x)] \pdx < oo, i:l,...,n}
it s=1,

+ e+

fotB(r,s, - D)ols, ) ds

o)

~<«C(I~‘){I|1P||C(§)+_/;”f(f, ')”qﬁ)d""'[f]p,a,r} viel0,T];

ue B?(R™), o k)
k+e6>1 with keN, s ]0,1].

{u\Q:uEH"'P(R"): D*
if s=
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| i i e in Banach space (in Russian),
We recall that when 5 >1/p any function in B2 ?(£) has a trace on 9{. | 13, P. E. Sobolevskii, On equations of parabolic 2”51’0; o Baach spacs (2 Russar

o L N ] ol

Similarly we can treat Dirichlet boundary conditions in E = L7(): in 1‘ Trudy Moskov. Mat. Olfhgg' 10 (L961)
this case the domains D, ,, are constant, so that the theory of Section 5 | Soc. Transl. 49 (1965), 1-62. ¢ votution in & Banach space st Math. J.12
applies. We have again [7], [16, Section 4.3.3] that I! 14 B Tanabe, On the equations of ev0

5 60)), 363-376.
Dyn=L7(R) Vv:e[0,T], ‘ (1560)
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1 " 16. H. Triebel, [ nterpolation Theog,
B i SE]O’_[’ | - d, New York, 1978). o .
Pual® OO) a - ZP 17 (A}-IC;Y%HSTEE abstract linear evolution equations in Banach spaces, J. Mat
A(zy + = . - ,
i 1976), 200-303. _ |
{ N Bozos.p(g) e 0} e E] 5 , 1[‘ 18 iocY:;P%tn2t§1§ abst)ract evolution equation of parabolic type, Osaka J. Math
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