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ABSTRACT 

We study existence, uniqueness and maximal regularity of the strict solution 
u @ C~([0, T], E ) of the integro-differential equation 

I u ' ( t ) -A ( t )u ( t ) -  B(t.s)u(s)ds =f(t). tC[O.T]. 
i 

with the initial datum u(O) = x, in a Banach space E. {A(t)},~l,,., I is a family of 
generators of analytic semigroups whose domains D~,~,, are not constant in t as 
well as (possibly) not dense in E, whereas {B(t)} ....... r is a family of closed 
linear operators with D...,~3 D~,~ VtE]s,T]. We prove necessary and 
sufficient conditions for existence of the strict solution and for Hflder continuity 
of its derivative; well-posedness of the problem with respect to the H61der 
norms is also shown. 

O. Introduction 

Le t  {A (t)},~l. .r  I and  {B(t,  s)}o . . . .  ~T be  t w o  f ami l i e s  of  c l o s e d  l i nea r  o p e r a t o r s  

on  a B a n a c h  s p a c e  E. In this  p a p e r  we s t u d y  the  l i nea r  p r o b l e m  

. ' ( t ) - A ( t ) u ( t ) -  B ( t , s ) u ( s ) d s  = f ( t ) .  t ~I0, TI 
(o.1) 

u(0) = x 

w h e r e  x E E a n d  f : [ 0 ,  T ] ~  E is a c o n t i n u o u s  func t i on .  W e  s u p p o s e  h e r e  t ha t  

fo r  e a c h  t E [0, T] ,  A ( t )  is the  in f in i t e s ima l  g e n e r a t o r  of  a b o u n d e d  a n a l y t i c  

s e m i g r o u p  {e~Am}~__-o; the  d o m a i n s  DA.~ m a y  c h a n g e  wi th  t, a n d  a re  no t  a s s u m e d  
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to be dense in E, i.e. the semigroups e cA(') need not be strongly continuous at 

so=0. About the operators B(t,s) we require that for each s E[0, T[ and 

t E ]s, T] the domain D~(,.s) contains DA(~, and in addition we assume for B(t,s) 
some smoothness in t. 

Integro-differential equations as in (0.1) have physical interest: for example, 

they arise naturally in the study of heat flows in materials with memory. For 

more specific physical models in which the linear theory of parabolic integro- 

differential equations applies, see Coleman-Gurtin [9], Gurtin [21], Belleni 

Morante [6], Miller [29] (and the references therein) and Heard [22, Section 6] 

where a brief survey of the physical background is outlined. 

There is a number of papers concerning problem (0.1) under different 

assumptions: we will just mention here the papers considering the parabolic case 

(i.e. when A (t) generates an analytic semigroup). The first contribution is due to 

Friedman-Shinbrot [18] (see also Friedman [17], [16]): they suppose DA(,)=- 
DA(o) (dense in E) and a H61der condition on t--->A(t)A(O)-', which are the 

classical assumptions of the theory of linear parabolic evolution equations in the 

constant-domain case, whereas B(t, s) has the convolution form h'(t - s)A (s), h 
being a scalar function belonging to the Sobolev space H 2'p(0, T) and such that 

h(0)>0.  They convert (0.1) into an equation of the form u ' =  T(u)+F(u), 
where F is "small", and solve it by a fixed-point argument. Thus the fundamen- 

tal solution of (0.1), or resoivent operator, R(t,s) is found, and the solution of 
(0.1) is given by the variation of parameters formula; an explicit representation 
of R(t,s) as an integral along a suitable path of the complex plane is given in the 
case A(t)=-A by Laplace transform methods. Existence and uniqueness of 
solutions of classical type (see Definition 1 below) are proved for any x E D(-A~ 
(the domains of the/z-fractional power of - A ) and any H61der continuous f. 

Several other papers concern the case A (t)---A and B(t,s) of convolution 
type. Miller ([28], particularly Section 8) studies (0.1) in [0, + oo[ by a method 

introduced by himself [27] in the finite-dimensional case: he transforms (0.1) into 

a problem z'(t)= Cz(t), z(O)= Zo in a larger Banach space Z, with a suitable 

operator C which is the infinitesimal generator of a strongly continuous 

semigroup. He solves this-problem by the Hille-Yosida theory and proves 

existence and uniqueness of strict solutions (see Definition 1.4 below) for any 

x E DA and f such that f ' +  B(-)x is uniformly continuous and bounded in 
[0, + oo[. Well-posedness of (0.1) is also shown, i.e. the norm of the solution 

Ilu(')ll~ tends to 0 uniformly on compact subsets of [0,oo[ as IlxlloA+ 
sup, oll/(t)llE tends to 0. 

Another method for the study of (0.1) in [0,oo[ when A(t )= A and B(t,s)= 
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B(t - s) rests on the formal application of Laplace transform to the equation in 

(0.1); the resolvent operator is then obtained by inverting the resulting equation, 

and again the variation of parameters formula yields the solution of (0.1). This 
approach is carried out by Grimmer-Pritchard [20]; in particular they assume 
that the Laplace transform /7(A) of B(t) exists and is analytic in a sector 

{larg z I < lr/2 + 6} with 6 > 0: this leads to a resolvent operator which is analytic 

in t. They find classical solutions whenever x E D~ Ajt • for some /z ~ ]0, 1[ and f 

is continuous with values in the same subspace. 

More precise results can be found in Grimmer-Kappel [19]: they find the 

resolvent operator as the integral of the series E~=~,[(A- A)-I/3(A)]' ( A -  A )-' 

along a suitable vertical line of the complex plane; classical (resp. strict) solutions 

are found provided x E D~ a~" (resp. x ~ DA) and f is either continuous with 

values in D~ A~" or H61der continuous with values in E. Their assumptions 

require that IIN(, )ll_-<const.[,  1-8 for ReX >0,  where /3 > 1, or alternatively 

the same estimate in the larger sector {largA I< 7r/2 + 6} with any /3 > 0. 

Sharp regularity results are proved in Da Prato-Iannelli [13]: their assump- 

tions are slightly stronger than those of [19], since they require that 

const.lAI -~ for l a rgAl<Tr /2+6;  accordingly, their results are also finer. 

Indeed, by using the interpolation spaces DA (/zoo) (see Definition 1.7 below) in 

place of D~ a~-, they prove existence results of the strict solution u which are 

analogous to those of [19], and in addition the maximal regularity property both 

in space and in time is proved: namely, u' and Au have exactly the same 

smoothness as f, where f is either continuous with values in E and bounded with 

values in Oa (/./,,~) (space regularity), or tx-H61der continuous with values in E 
(time regularity); in each case x has to be chosen in On with Ax + f(O)E 
Oa (/~,~). 

The general case of (0.1) (i.e. when A (t) is variable with dense and possibly 

non-constant domains, and B(t,s) is not necessarily of convolution type) is 

treated by Prfiss [30] by a direct method. He takes for A(t )  the same 

assumptions as [18] in the constant-domain case, whereas in the case of variable 

domains a set of assumptions introduced by Yagi [39], which guarantees the 

solvability of the linear parabolic evolution equation, is taken: for B(t,s), a 

H61der condition with respect to (t,s) is assumed. He converts the equation for 

the resolvent operator of (0.1) into an integral equation in the space of bounded 

linear operators E--~ E, and verifies (which is the main step) that the solution of 

the latter equation is in fact the resolvent operator of (0.1). He finds classical 

(resp. strict) solutions whenever [ is H61der continuous and x E E (resp. 

x ~ Damon), and shows in addition well-posedness with respect to the norm of E. 
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In Tanabe [36] the case of non-constant, dense domains is studied; the 
solvability of the linear parabolic evolution equation is assumed (this is 

guaranteed by different types of hypotheses: see Kato-Tanabe [23], Tanabe [34], 

Yagi [39], [40]), whereas B(t,s) has the same form as in [18]. His method 

resembles that of [18], but enables him to find classical solutions for any x E E 

and H61der continuous f. 
All above papers consider the case of dense domains; on the other hand 

Lunardi-Sinestrari [26] in a recent paper treat the non-autonomous, constant- 

domain case, taking for A (t) the same hypotheses of [18] except for the density 

of the domain. About B(t,s) some regularity is assumed, which however in the 

convolution case B(t, s) = B(t - s) reduces simply to require liB(. )11 • LP( 0, T) 

for a suitable p > 1. The integral term is considered as a perturbation of the 

linear parabolic autonomous evolution equation with fixed A = A (0); they use 

the existence, uniqueness and maximal regularity results proved by Sinestrari 

1311 for the latter equation, and find strict solutions of (0.1), without constructing 

the resolvent operator, for any x E DA(,,~ and/x-H61der continuous f satisfying in 

addition the compatibility condition A (0)x + f(0) E DA~o~(/~,~). Moroever u' and 
A( . )u ( . )  are /z-H61der continuous too, and the problem is well-posed with 

respect to the /z-H61der norms. 
In other papers, linear equations different from (0.1) are considered, in which 

however generators of analytic semigroups play a crucial role: see, among 
others, Carr-Hannsgen [7], [8], Da Prato-Iannelli [12], Da Prato-Iannelli- 
Sinestrari [14]. Nonlinear versions of (0.1) are treated in Webb [37], [38], 

Fitzgibbon [15], Tanabe [35], Heard [22], Sinestrari [32]. 
In this paper we study problem (0.1) by the same method used in [26], i.e. we 

treat the integral term as a perturbation of the linear non-autonomous parabolic 

evolution equation 

(0.2) [ u ' ( t ) - A ( t ) u ( t ) = f ( t ) ,  / E[0, T] 

u ( 0 )  = x 

in the variable-domain case. In particular, we do not make use of the fundamen- 

tal solution of (0.2), using instead the regularity results and the representation 

formula for the solutions of (0.2) proved in Acquistapace-Terreni [1]; by a 

fixed-point argument we deduce existence, uniqueness and maximal regularity in 

time for the strict solution of (0.1), in complete analogy with the results of [1] for 

the strict solution of (0.2). Our hypotheses relative to A(t)  are the same as 

Kato-Tanabe [23], except for the density of domains, which is not assumed here; 
about B (t, s) we essentially require a H61der condition for t ~ B (t, s)A (s)-~ (not 
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uniform with respect to s) and LP-integrability for s~ B( t , s )A ( s )  -I with a 

suitable p > 1. From this point of view, our assumptions are weaker than those 

of [30], whereas the hypotheses in [30] about A (t) are independent of ours (see 

Remark 1.2 below). Moreover our results about strict solutions are stronger than 

those in [30]; on the other hand we do not consider classical solutions here 

(whereas this is done in [30]). This however could be done, again by a fixed point 

technique, with just a slight strengthening of the assumptions about B(t,s), in 

order that the integral fi~B(t,s)u(s)ds makes sense for a classical solution u. 

We describe now the subject of the next sections. In Section 1 we specify our 

assumptions, state our definitions and prove some preliminary results. Section 2 

contains our main theorems about existence, uniqueness and maximal time 

regularity of strict solutions of (0.1), as well as their continuous dependence on 

the data. In Section 3 we give two significant examples which are analyzed in 

detail. Finally there is an appendix where some improvements are given of the 

results of [1] relative to the linear parabolic non-autonomous Cauchy problem 

(0.2), which had been used in the proofs of our main results in Section 2. 

I. Notations, assumptions and preliminaries 

Let Y be a Banach space and [a,b] a finite interval of the real line. We will use 

the following Banach spaces of functions: 

(a) for each p E [1,~[ 

LP(a, b ; y )  = {f :]a, b[--* Y : [  is Bochner measurable and £°llf(s)ll ds < ~} 

and 

with norms 

C([a, b ], Y) = {f" [a, b ] ~  Y "f is continuous}, 

I l f l l , , , o , b , Y ,  = , d s  , 

sup IIf(=)ll, ; 
s~la,H 

(b) for each 0 E ]0,1[ 

C°([a, b], Y) 

= I rE  C([a,b], Y) 
( 

f(t)H~ 
t[e t f~ 
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with norm 

llflF,,lo.~J.~, = ]}fll~,lo.,J.~., + [f]c,clo.,j.Y,; 

(c) C'([a,b], Y)={fE C([a,b], Y):f  is strongly ditterentiable in [a,b] and 

f '  E C([a, b], Y)}, with norm 

[[fIIc'(Ia.H.Y)- 11 f IF,I°.~I.~, + Ilf'llc¢¢o.~l.~; 

(d) for each O ~]0,1[ 

C""([a, b], Y) = {f ~ C'(Ia, b], Y):f' ~ C"([a, b], Y)} 

with norm 

IIf IF"',I,,.,,,.Y~ = II f IF,lo.,,~.~, + II f '  IF',~o.,,I.,',- 

We will also consider the function spaces 

Cla, b],Y)= N C([a +e, bl, Y) 
~C]O,b-al 

and 

C°(]a,b], Y), C'(]a,b], Y), C"°(]a,b], Y) 

which are defined similarly. 

If X, Y are Banach spaces, 37(X, Y) (or 37(Y) if X = Y) will denote the 

Banach space of bounded linear operators Q : X---> Y, with norm 

_ tllo~ll~.llxll,, {o}}. IIQ I]~,~,x.Y)- sup ~ .x ~ x -  

If A is a linear operator in a Banach space Y, we denote by DA its domain, by 

o-(A) and p(A) its spectrum and resolvent set; for A Ep(A) we denote 
( ) t - A )  -t by R(A,A). 

Let us list now our assumptions about the operators {A(t)},~lO,T] and 
{B(t,s)},,<=,<,~T. In what follows E is a fixed Banach space and T is a real positive 

number. 

HYPOTH~SlS I. For each t E [0, T], A( t ) :DA, )C  E ~ E  is a closed linear 

operator; in addition there exist 0o ~ ]~r/2, ~r] and M > 0 such that 

(i) p(A(t))D_S~,:={zEC:largzl<Oo)U{O} Vt~[0 ,  T]; 

M VAES~,, VtE[O,T]. (ii) II R (~, A (t))ll~,e, < I A l+ 1 

Thus in particular there exists {M,}.~N C ]0, +oo[ such that 

(iii)]lA(t)"e""'ll~,E,<=M,/C ¥ # > 0 ,  V n ~ N ,  Vt~[0 ,  T]. 
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HYPOTHESIS II. For each )t E S~,, t---~ R(A,A (t)) belongs to C'([0, T],~(E)) 
and there exist L > 0 and et E ]0, l[ such that 

R A [_+ VA E S~,, V t e  [0, T]. 

HYPOTHESIS III. There exist N > 0, r / E  ]0, 1[ such that 

-~A(s)-'  <-_S(t-sy Vt, sE[O,T]. 

HYPOTHESIS IV. ForO<=s<t<=T,B(t,s):Dot,.~)C_E--~Eisaclosedlinear 
operator; in addition: 

(i) DBt,.~)~_DAt,) VtE]s,T]; 
(ii) for each t E ]0, T] and x E E, B(t, . )A(.)  'x is Bochner measurable in E, 

and there exist H > 0, /3 C ]0,1[ such that 

H 
[IB(t.s)a(s)-'ll.p,~,<=(t_s),_. fo rO~  s < t ~  T. 

or. alternatively. 

]IB(t,.)A(.)-'X]IL,,,,o,t,,.,)<-HIIxIIE Vt E ]0, T], V x E E ;  

(iii) there exists a measurable function ~b0",s) such that Ho :=  

sup~l,.Tif~, d~(r,s)ds < ~ and 

]]B(t,s)A(s)-'- BO',s)A (s)-'l]•,E)- <- ( t -  z)~&O',s) fo rO= < s < T =< t =< T, 

where /3 is the number appearing in (it). 

REMARK 1.1. As usual, in Hypotheses I, II, III, IV the role of A(t) may be 

played by A ( t ) -  too, where too is any positive number. Indeed, the substitution 
v ( t ) =  e-"'u(t) leads to a problem like (0.1) with A(t) ,  B(t,s), f(t) replaced 
respectively by A ( t ) -  to~, e-~,,t'-')B(t, s), eO"'f(t); hence the results of this paper 
can be applied to v, and consequently to the original u. 

REMARK 1.2. Hypotheses I, II, III are classical (except for the lack of density 

of domains) in the theory of parabolic evolution equations with variable domains 

(see [23], [1]). Slight refinements are however possible in Hypothesis II: namely, 

one can just require that t-~R(A,A(t))x E C1([0, T ] ,E )  for each x E E, with 

the same estimate on IloR(X,A(t))/~tll~. In Acquistapace-Terreni [4] a 

situation is considered in which Hypothesis II holds only in this weakened form 

(and not in the form stated above). 
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Hypothesis Ill can also be modified [39] and weakened [40], but for our 

purposes such modifications are not useful since under the assumptions of [39], 

[40] only the existence of a differentiable solution of (0.2) was proved, and not 

H61der regularity of its derivative. 

REMARK 1.3.  Hypothesis IV is required in order to assure that 
t t f,, B(t,s)v(s)ds is H61der continuous whenever A ( . )v ( . ) i s  continuous (see 

Lemmata 1.10 and 1.11 below); consequently, it can be replaced by any 

(possibly) weaker statement for which that conclusion is still true. 

In particular in the convolution case, e.g. B(t ,s ) - -Q(t -s )A(s)  with 
Q(o')@~(E) V~ E [0, T], Hypothesis IV requires a sort of local H61der 

continuity of ~r ~ Q(~). Actually this assumption can be dropped altogether but 

the proofs of our main theorems have to be changed and one obtains less general 

results: see Remark 2.3 below. 

Let us define now our solutions. Let x E E and f ~  C([O,T],E). 

DEFINmON 1.4. We say that u:[O,T]~E is a strict solution of (0.1) if 

u E C'([0, T], E), u (t) E DA (,) V t E [0, T] and A (-)u (-) E C([0, T], E), and 

I' u ' ( t ) -A( t )u ( t ) -  B(t,s)u(s)ds=f(t) Vt~[0 ,  r ] ,  u(0)=x.  
) 

DEFINITION 1.5. We say that u :[0, T ] ~  E is a classical solution of (0.1) if: 
(i) u e c([0, r l , e ) n  Cl(]0, T],E), u(t)E Da,) Vt e ]0, T] and A(. )u( . )E 

cl0, r l ,  E); 
(ii) there exists 

B(t,s)u(s)ds "= lira B(t,s)u(s)ds Vt I0,TI; 
) e~O + 

I' 
(iii) u ' ( t ) -A( t )u ( t ) -  B(t,s)u(s)ds=f(t) V t e l 0 , r l ,  u(0)=x.  

I 

REMARK 1.6. We call "classical" the solution of Definition 1.5 because in the 

classical semigroup theory when B(t , s ) -0  the construction of the evolution 

operator leads to this kind of solution. The name "strict solutions", relative to 

the functions of Definition 1.4, goes back to Da Prato-Grisvard [10] and has 

been often adopted (see Da Prato-Grisvard [111, Acquistapace-Terreni [1], [2], 

[31, Sinestrari [311, Lunardi [25]). However it should be noted that in [30] a 
ditterent terminology is used: our classical (resp. strict) solutions are denoted 

strict (resp. strong) there. 
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Let us recall now the definition of the intermediate spaces DA (0,o~) (0 E ]0,1[) 

between DA and E, where A is a closed linear operator in E, generating a 

bounded analytic semigroup (possibly not strongly continuous at 0). 

DEFINITION 1.7. We set for each 0 E [0,1[ 

Oa(O~)={x:supt-el le 'ax xtlz <De}. 

DA(0,oc) is a Banach space with norm 

IIx 11o = Ilx I1~ +supt-°[[ e'ax - xll~; 
t > 0  

in addition, we have DA C DA(0,oo)C_ DA(0',oo)C_/SA for 0 <  0 ' <  0 < 1 with 

continuous inclusions. Equivalent definitions and further properties of these 

spaces can be found in [11], [31]. 

We list now some basic results which will be needed in the following section. 

First of all, set for any interval [a,b] C_ [0, T] 

C([a, b], D a,)) = {u @ C([a, b], E) :  u (t) E DA(,) 

Vt C [a,b],A (. )u(. )@ C([a,b ],E]}; 

as 0 E p(A (t)) Vt E [0, T1, C([a, b], DA~) is a Banach space with norm 

II u IIC,l,.h i.o,,, ,) = II A ( . )u  (')llc,l°.bI.E,. 

Next, we give a survey of the main properties of the strict solution of the linear 
problem 

(I.1) { u ' ( t ) - A ( t ) u ( t ) = f ( t ) ,  t@[to, T] 

u (t,,) = x 

with initial time to E [0, T[. These properties in the case to = 0 are essentially 

proved in [1], but for the general case only straightforward modifications are 
required. 

PROPOSITION 1.8. Under Hypotheses I, II, III let x E DA(4,), [ ~ C a ([t0, T], E),  

8 E ]0, r /^  a ] ;  then a strict solution u(t) of (1.1) exists if and only if 

[' ] A(to)x + f(to)- ~-~A(t) -l ,=,,A(to)x E DA,~,). 
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In this case the strict solution is unique and is given by 

[, (1.2) u(t) = e~'-")A")x + e"-S)A")g(s)ds, t ~ [t,,, T], 
o 

where g is the unique solution of the Volterra integral equation 

(1.3) g/t)+ P(t,s)g(s)ds = f / t ) -  P/t, to)x, t e [to, T], 
o 

whose kernel P/t, s) is defined by 

(1.4) P(t,s)= [ O e  ~A '̀)] , 0__<s<t__< T. 
Lt.,~ 3 

Moreover/or each t~ E ]t,,, T] and p E ]0, r/[ we have 

11A (.)u(. ) -  A ( to)X lie(/ ...... i.E)----< C, [ ~"'r/_o~ [[I A ( t,,)x tie + II f tfc,t[,,,.,,i E)l 

(1.5) + l A (t,)x + f(t,,)_ [_fft A (t)_, ] ..... A/to)x/iF} 

where C~ does not depend on t(), t], p. 
Finally we have u ' ,a( . )u( ' )GC~(]to,  T],E); in addition, u ' , A ( . ) u ( . ) ~  

Cn([to, r ] , z )  if and only if 

(1.6) A(to)x +[(to)-[-ff~A(t)-'],=~A(to)xEDa(,,,(&°°), 

and if this is the case, then 

tt u'llc,,[,,,.ri.E) + II a (.)u (.)llc'([,,,.rI.E) <= C2 { II a (to)x II~ + Ill IIc,(i,,,.Tl.~) 

(1.7) 
+ I IA( to )x+f ( t ° ) - [ f f tA( t ) -} ] ,  .... A(t(,)x oA,,,,)(,.=)} ' 

PROOF. For the case to = 0 see [1, Theorems 5.1 and 5.3] and Theorems A.5, 
A.6 and A.7 in the Appendix below. 

LEMMA 1.9. Under Hypotheses L H suppose that u is a strict solution of (1.1); 
then we have 

A ( t ) u ( t ) + f ( t ) -  -~A(t)- '  A(t)u(t)EDa(,)  Vte[to,  Tl. 

PROOF. Fix t~ E [to, T]; by definition u//t) E OA(,,) and moreover, as t ~  t~ we 



VOI. 53, 1986 LINEAR PARABOLIC DIFFERENTIAL EQUATIONS 267 

get 

u ( t ) -  u( t , )~A(t , )u( t , )  + f(t,) in E. 
t -  t ,  

On the other hand 

u( t ) -  u (t,) = A (t)-' - A (t,)-' A (t)u(t) + A (t,)-' A (t)u ( t ) -  A (t,)u(t,) 
t - -  t l  t - -  t l  t - t l  

vt ~ [to, r l  

C([tll, tt],Da()) into 

which implies 

u ( t ) - u ( t i ) - A ( t ) - ' - A ( t ~ ) - I A ( t ) u ( t ) E D a , , )  Vt~[t , , .T]; 
t - t j  t - t j  

as t ~ t ~  we get 

d i 
A(t,)u(t,)+ [ ( t , ) - [ - ~ A ( t ) -  ] ,=,a(t ,)u(t l)E Da,,,,. 

Let us consider now the operators B(t, s) introduced in Hypothesis IV. First of 

all we have: 

LEMMA 1.10. Under Hypotheses I, IV  we have: 

f( II ) II - I  B(t ,s)A(s  ~(E)ds<=C3(t-7") a i[O<=r<=t<=T. 

PROOF. Evident. 

LEMMA 1.11. Under Hypotheses I, IV  fix to E [0, T[ and set 

f Sv(t) = B(t,s)v(s)ds; 
o 

then for each tiE]to, T], S maps continuously 
{u E CO([to, t,],E): U(to) = 0}; in addition 

II Sv IIc°,.,,,,, ~,--- Call v II.,,,,,,oAI,, 
where C4 does not depend on to and ft. 

PROOF. Let v ~ C([to, t,],Dac.)): then if to< r --5_ t < t, 

Sv( t ) -  Sv(r)  = f '  [B(t, s)A (s)- ' ]A (s)v(s)ds 

f, + [B( t , s )A(s ) - ' -  B(r ,s)A(s)- ']A(s)v(s)ds;  
o 
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hence by Lemma 1.10 and Hypothesis IV(iii) 

I lsv( t ) -Sv(~)l l~<=f~(t - , )~l lv l lc ,1 ,o . , , j .o~, ,~+(t - , )°  4,(~,s)dsllvllc,l,o.,,i.o~,,~ 
0 

_- (c3 v I-Io)11 v II~,~,o.,,J.o~,,,(t - ~)". 

In addition 

Ilsv(t)ll~ =< f,i [[ B ( t, s )A ( s )-' ll~,E,ds ll v l[¢,l,,,.,,i.o~, ,, 

=< C~ll v II~,t,,,.,,i.o~,,,(t - to)", 

so that [Sv](to)= 0 and the estimate follows. 

2. Strict solutions 

In this section we will show, by a fixed-point argument, existence and 
uniqueness of the strict solution of (0.1); next, we will prove its maximal 
regularity and well-posedness of the problem. 

THEOREM 2.1. Under Hypotheses I, II, III, IV, let x E DAto~, f E C ~ ([0, T], E), 
where ~ E ]0,1[; then a strict solution u of (0.1) exists if and only if the vectors x 
and f(O) satisfy 

(2.1) A (O)x + f(O)- [ d A  (t)-' ],=oA (O)x E DA,o,; 

if this is the case, the strict solution is unique, and there exists c5 > 0 such that 

(2.2) Ilu'IIc,tO.TJ.~,+IIA(')U(')IIc,tO.T~.E, <-CS{IIA(o)x& +IIflIC',~,,,T~.~,}. 

PROOF. If a strict solution of (0.1) exists, then (2.1) follows by Lemma 1.9. 
Suppose conversely that (2.1) holids: for each to E ]0, T] consider the afline 

submanifold of the Banach space C([0,to],DAt.~) defined by 

Cx([O,t,,l, OA,.,): = {u ~ C([O, tol, OA~.,): u(0)= x}; 

then C~([O, to],DAt.~) is a complete metric space with distance 

d(u, v) = II u - ~ ll~,~O.,o~.O~,,,). 

By Lemma 1.11 the operator 

v ~ I S v J t t )  = ~' B( t , s ) v ( s )ds  
.No 
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maps C~([0,toI, DA~0 into {uECa([O,  to],E):u(O)=O}; hence for fixed 

v E C,([O, to],DA(O we can consider the problem 

I w ' ( t ) - A ( t ) w ( t ) = S v ( t ) + f ( t ) ,  t E [0, to], 

(2.3) [ w (0) = x. 

Note that Sv + f  E C~^*([O, to],E) and [Sv](0)= 0. Hence, by Proposition 1.8, 

problem (2.3) has a unique strict solution w(t) which is given by 

Jo (2.4) w(t) = e'A"~x + e~'-'AC'~g(s)ds, t E [0, to], 

where g(t) solves the integral equation 

fo' (2.5) g(t)+ P(t ,s)g(s)ds = Sv(t)+ [ ( t ) -  P(t,O)x, t~[0, to] ,  

whose kernel P(t ,s)  is defined by (1.4). 
We have thus defined a map F: v ~ F ( v ) ,  where, for each v E C~([O, to],DA(.~), 

F(v) = w is the strict solution of (2.3); hence F maps Cx([0, to], Da(.~) into itself. 

Moreover, by (2.4) we deduce 

A(t)[r(v)l(t)-- A(t)e'A('~x + A(t)e('-'~a('~[g(s)-g(t)lds + (e 'A('~- 1)g(t), 

(2.6) t e [0, tol, 

with g defined in (2.5). 
Let us prove that F is a contraction in the complete metric space 

Cx([0, to], Da(.)) provided to is sufficiently small. 

Fix v~, v2 E Cx ([0, to], Da(.~); then F ( v , ) -  F(v2) solves (2.3) with x = 0, f = 0, 
v = v, - v2, so that by (2.6) 

A (t)[F(vl)(t) - r(v2)(t)] = I; A (t)e°-'~A(°[d/(s) - $(t)]ds + (e 'A(°-  1)$(t), 

(2.7) t E [0, to], 

where 

~0 t d/(t) + P(t, s)~b(s)ds = [Svt]( t ) -  [Sv2](t), t ~ [0, to]. 

By Lemma 1.11 and Lemma A.2 in the Appendix below, we have in addition 

¢ E C~^'^~([O, to],E), ¢(0) = 0 and 
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It ~ tl CB . . . .  ((O,,oLE , ~-~ C6II SOl - S02nco([O, to],E ) 

where Ca does not depend on to; therefore by (2.7) we deduce that 

[ Ml t_Mo+l]tO^~^.llSv_Sv2[[cOoo.,,,].~ , IIA(t)[r(o,)(t)- r(o2)( t )] l lE ---- c a  ~ ^ o, ^ ,7 

< Cytg ^°^711so, - sv~ll~o,[o,,,j.E,. 

Hence Lemma 1.11 yields 

(2.8) II r ( o , )  - r(o~)ll~,~,,.,,,~,,,,, ~ cTc4t~o^=^'lJ v , -  O2]lC(lO.to],Oa(.) ). 

Choose now 

] to@ j0,(2C7C4)-I/(0^"^'~)^ \ "r/ / 

then by (2.8) we get 

l i t (o , ) -  r(om)ltc((o.,,,~.o.,,, ~ kll o , -  o2 IIc,~o.,,,,.o.,,,, 

so that the operator r :  C, ([o, to], DA(.))--) C, ([0, to], DA(.)) has a unique fixed point 
Uo. This means that there exists a unique uo E C([0, to], DA(.))71 C'([0, to], E ) s u c h  
that 

t So u;(t) - A (t)Uo(t) = B (t, s)uo(s)ds + f(t), t E [0, to], 
(2.9) 

U o ( 0 )  = x ; 

in addition by (1.5) and Lemma 1.11 we get, choosing p = rt/2, 

II A (')uo(" ) - a (0)x I[c([o.,oI.E) 

<-_ c ,  1 2 tg^o^~^(~,2,[i I A (0)x lIE + II f IIc',tO.,o].E) + c411 Uo IIc(~o.,o~ oA, ,,] 
L rl 

+ Ia(o,x + ],=oa (O'xll  } 
< 2C, tR^. ^o^(.m[(1 + c,)ll e (0)x lie + Ilfllc'(tO.,o~.E) 

+ c411A (.)Uo(" ) - A (0)x IIc(to.,o~.E,] 

+ C,l[a(O)x+f(O) - [ d  A(t)_,],=oA(O)xl[e ' 

which implies, because of the choice of to, 
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(2.10) tta(')uo(')llc,to.,oi.E)<= Cs{llA(O)xlle + Ilfllc~(lo.,,,;.e)}- 

Hence the desired strict solution of (0.1) is constructed up to t = to. In addition 
we have by Lemma 1.9 

f ] A (to)Uo(to) + , B(to,S)Uo(s)ds + f ( to ) -  ~-~A (t)-' ..... A (to)uo(to) E DA(~,). 
(2.11) 
Now we can start again: set x, = uo(to), t, = (2to)^ T, and define 

f, [S, ol(t)= B(t,s)v(s)ds, v E C([to, t,l, Da,.)). 
o 

By Lemma 1.11, S,v E Ca([t,,,q],E), [S~v](to)=O and 

(2.12) IIS1Vllc",l,o.,,1.z~ <-- C4ttVlIc,I,,,.,,j.oA,.,) Vv E C([t,,,t,],Da,.)). 

Consider the map F, :C~,([to, t,],Da~.))~ C~,([to, t,],Da~.)) defined by F , (v )=  w, 
where w is the strict solution of 

w ' ( t ) - A ( t ) w ( t ) = S , o ( t ) +  f'°B(t,S)Uo(s)as+f(t), tElto, t,], 

W(to) = x , .  

By Proposition 1.8 it is clear that w exists, since it is easily seen that 

t-->[S, vl(t)+f'oB(t,S)Uo(S)ds+[(t) belongs to Ca^~([to, tl],E) and since 
(2.11) holds; moreover,  as before we easily get that F, is a contraction in 
C~,([to, h], Da(.)). Denote  by u~ its unique fixed point: then u, E C([to, t,], Da(.)) n 
C'([to, t,], E)  and 

t t o t u',(t)-A(t)u,(t)= fo B(t,S)Uo(S)ds+ ~ B(t,s)u,(s)ds +f(t), 
o 

(2.13) t ~ [to, t,], 

u,(to) = x,. 

Hence by (1.5) and (2.12) we have for each p G]0,r t[  

II a (')u~(" ) - A (to)X, Ilc(i,o.,,1.~) 

(2.14) <=c, ~ P IIIe(to)x,ll +llfllc,(t,o.,,L )+ B 
- -  I C P  ( [ t o , t l ] ,  E )  

+ ql l  u, 

+ GilA(to)no(to)+ fo'°B(to, S)Uo(S)ds+f(to) - [~a(')-'],=,oa('o)"o('o)ll ~ 
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On the other hand it is easy to verify that 

J O C# ([ to,q l,E ) 

so that, choosing p = ~/2, (2.14) leads to 

II A (')u,(" ) - A ( t o ) x ,  

P. A C Q U I S T A P A C E  AND B. TERRENI  lsr. J. Math. 

_ _< 2C, t~^.^~ ^(.m{( 1 + C4)II A (t,,)x, lie + II f IIc,(~,,,,,, E, + c ,  II A ( . )u , ( .  ) .q 

- A (to)x, IIc({,,,.,,1.E, + II UoJlc(tO.,o].OA, ,,} 

+ C, A (t,,)u,,(to)+ f"' B(t,,,s)u,,(s)ds + f(to)- [ d A (t)-' ] ..... A (to)uo(t,,) IE' 

and finally, by (2.10) and recalling that (2/rt)C~Cj~^"^°^("/2)< ½, 

(2.15) IIA C,{IIA(O)xlIE 

Clearly, by (2.9) and (2.13) it follows that the function 

u( t )=  { Uo(t), t E [0, to] 

u,(t), t ~ [t,,,t,] 

belongs to C([0, t~], DA(.)) fq C'([0, t,], E) and solves (0.1) in [0, tt]; in particulal 
by (2.10) and (2.15) 

II A (.)u (.)llc(io.,~l.E, <= C,o{ll A (0)x lie + II f II~"(to ,,~.~,} 

where C~o = C8 v C9, and by Lemma 1.9 

d 1 
A(t,)u(t,)+ So" B(tl,s)u(s)ds + f ( t , ) - [ -~A( t ) -  ],=, A(t,)u(t ,)E DA(,~,, 

so that we can start again. In a finite number of steps we obtain the solution in 
the whole interval [0, T] and (2.2) also follows. 

Let us study now the regularity properties of the strict solution of (0.1). 

THEOREM 2.2. Under Hypotheses I, II, III, IV, let x E Da (o), f ~ C ~ ([0, T], E), 
6 E ]0, a A 7/ A/3 ], and suppose that 



Vol. 53, 1 9 8 6  LINEAR PARABOLIC DIFFERENTIAL EQUATIONS 273 

(d ] A (O)x +jr(0)-  -d-i A (t)-' ,=oA (O)x E Da,o,. 

Then the strict solution u ojr (0.1) is such that u ' ,A ( . )u( . )  E C~(]0, T],E). In 
addition u ', A ( . )u ( . ) E C~ ([O, T ], E ) if and only ijr 

(2.16) A(O)x +jr(0)-  -~A( t ) - '  A(O)x ~ Dao,,(6,~), 
t = O  

and if this is the case, then 

II u'llc.,~o TI~, + II a (')u (')llc",t,,.~.~,--< c , ,  /II a (0)x lie 
(2.17) 

t 

+ II jr IIc',IO.TI.E, 

PROOF. We know that u E C([0, T],Da(.~); hence in particular Lemma 1.11 

yields t ~Su ( t )=S l ,  B ( t , s )u ( s )dsECa([O,T] ,E)and  [Su](0)=0. Thus u 

satisfies 

u ' ( t ) - A ( t ) u ( t ) = g ( t ) ,  t E[0, T] 

u (0) = x 

where we have set g = Su +jr. Note that g E Cs([O,T],E) and g(0) = jr(0), so 

that 

] A(O)x +g(O)-  -~A( t ) -  A(O)x~Da~,o. 
r ~ 0  

All conclusions then follow by Proposition 1.8. 

REMARK 2.3. In the convolution case described in Remark 1.3, we can drop 

Hypothesis IV(iii), but the results are less precise. Namely, under Hypotheses I, 
II, III and IV(i)-(ii), it can be shown that if x E Dato~ and jrE C~([O,T],E), 
where 6 E ]0,~/^ a], then a unique strict solution u of (0.1) exists if and only if 

(2.16) holds, and in this case u ' ,A ( . )u ( . )ECS([O,T] ,E)  and (2.17)is true. 

Hence to get a strict solution a little more regularity on the data x, jr is needed. 

The proof also has to be changed: one has essentially to apply the contraction 

principle in the space C~([O,T],Dat.)) (whose definition is clear) instead of 

C([0,T],Da~.~); for the details see [26], where this method is employed in the 

constant-domain case. 
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3. Examples 

Consider the problem 

(3.1) 

u, ( t , x ) -  a ( t , x )u , , ( t , x ) -  b( t ,x )ux( t ,x ) -  c( t ,x)u(t ,x)  

i' - , [p(t ,s ,x)u~,(s,x)+q(t,s,x)u~(s,x)+ r(t ,s,x)u(s,x)lds 

=f(t ,x) ,  (t,x)~[o, r l  x [o,11; 

m,(t)u(t,O)-/3o(t)ux(t,O) = a~(t)u(t, 1)+/31(t)ux(t, 1) = 0, t E [0, TI; 

u(O,x )=6(x ) ,  x E[0,1],  

with prescribed data f,~b, under the following assumptions: 

a,b,c E C([0, T l x [o, 11,~), 

(3.2) 
a( . , x ) , b ( .  ,x ) ,c( .  , x ) E  C"~ (10, TI,R) 

with norms independent of x ~ [0, !], for some r / ~  ]0, 1[, 

a > 0 ,  c =<0in [0, T] × [0, 1]; 

(3.3) 

ao,/3o, a,,/3, E C '~ ([0, T], [0, + oo[) ('O defined in (3.2)), 

oto+/3o> 0, a , + f l , > 0  in [0, T], 

fo' a,,+ ~, + Ic(-,y)ldy >0 in [0, r l ;  

(3.4) p, q, r : {(t, s)" 0 <= s < t =< T } ~  C are measurable functions; 

(3.5) 

p(t,s,. ),q(t,s,. ),r(t,s,. )E  C2([0,1],C) 

and there exist H > 0,/3 E ]0,1[ such that 

[p(t,s,x )[ + I q(t,s,x )[ + [r(t,s,x)[ <= H/(t - s) '-~ 

VtEI0,T],  Ws~[0,t[, Wx~[0,1], 

or, alternatively 

~ ' [  sup Ip(t,s,x)[+ sup Iq(t,s,x)[ 
.Io L x~lO, q x EI0.q 

] 1/O-/3) 
+ sup Ir(t,s,x)l ds<=n Vt~[0, T]; 

xE[0.1l 
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(3.6) 

p ( . ,  s, x ), q (. s, x ), r(. s, x ) ~ C ~ (]s, T]) (/3 as in (3.5)), 

and there exists a measurable non-negative function ~b(r, s) 

such that H . =  sup ~b(r,s)ds<~ and 
r~lO.T] 

sup Ip( t , s ,x ) -p(r , s ,x ) l+ sup Iq(t,s,x)-q(~',s,x)l  
xe[O.l] xEIO.q 

+ sup Ir( t , s ,x)-r(r ,s ,x) l  <=lt-~la¢(~-,s) 
x~|o,l] 

Vs Vt, - ]s, r l .  

In order to apply the results of Section 2, we set 

E = C¢[0,11), Ilull  = sup lu¢x)l='llull=, 
x~10.1] 

and define for each t E ]0, T] and s E [0, t[: 

{ DA,) = {u E C2([0,1]): ao(t)u(O)-/3o(t)u'(0) = ot,(t)u(1)+ fl,(t)u'(1) = 0}, 

(3.7) [A (t)u ](x ) = a(t,x )u"(x ) + b(t,x )u'(x ) + c(t,x )u(x ), 

{ Ost,,,) = {u ~ C([O, 1]):p(t,s,. )u" + q(t,s,. )u' + r(t,s,. )u E C([0,11)}, 

(3.8) [B(t ,s)u](x)=p(t ,s ,x)u"(x)+q(t ,s ,x)u ' (x)+r( t ,s ,x)u(x) .  

We will verify now that the operators {A (t)} and {B(t, s)} defined in (3.7) and 
(3.8) satisfy Hypotheses I, II, III and IV of Section 1. 

To begin with, in order to verify the assumptions for {A (t)}, let us prove the 
following a priori estimate: 

PROPOSITION 3.1. Let a,b,c, ao, a,,/3o,/3~ be as in (3.1), (3.2), and suppose that 
u E C2([0,1]) is a solution o[ 

(3.9) 

Au - a(t,. ) u " -  b(t,. ) u ' -  c(t,. )u = [ E C([0, ll), 

cto(t)u(0) - /3o(t)u '(0) = zo E C, 

m(t)u(1)+/3~(t)u ' (1)  = z~ E C, 

where t E [0, T] is fixed and A is a complex number lying in the sector 

(3.10) ~ , K = { z E C : R e z > = O } U { z ~ C : l l m z l > g l R e z l }  ( g  > 0). 
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Then there exists M > 0, depending on K, a, b, c, do,/3o, a, , /3,  but independent o[ t, 
such that 

[1 +IA I1 II. lie + [1 +IA I ''2] II u'llE + II u" lie --< M(II f lie + [1 +1~ I"][I z,i I+lz,  I1} 
(3.11) 
where 

(3.12) 

PROOF. 

(3.13) 

where 

1 

if/~" = min [/3o(0^/3,(01>0, t~lO, TI 

iflz =0.  

The function u solves the equation 

- (~b(t,.)u')'+ [A -c(t,.)]y(t,.)u = fy(t, .)  in [0,1 l, 

(3.14) ff(t,x) = exp ( (Xb(t'Y)d~ O(t,x) 
Jo a(t ,y)  "}'  y(t,x) = a(t,x)" 

Set 

p=mindt(t,x); m=mina(t,x); 
t,x t,x 

(3.15) 8 =min{m}n(ao(t)+al(t)+ fo'lC(t,y)ldy ), 

min (ao(t) +/3o(t)), m!n (a,(t) +/3,(0) }. 

In order to prove (3.11) suppose first that 

(3.16) A E~K rl{z E C : i z l  < ~o} 

with eo to be fixed later. Multiplying both members of (3.13) by ti and integrating 
over [0,1], we get 

1 1 iO ! ~(-l)'dt(t,i)u'(i)u(i)+ So ~blu'12dx + Icl~lul2dx 

(3.17) 1 1 
= fo f~adx - X fo ml U l2 dx ; 

on the other hand, due to the endpoint conditions in (3.9), we can write for 
i =0,1  
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( - 1)'$(t, i)u'(i)u(i) = 

Hence if we set 

t ~b(t,i)~lu'(i)[2 + ( - 1)'~b(t,i)u'(i) a,.~t) 
if/3~(t) _-< a,(t), 

• ~ , ( t )  . ' 2  - -  z ,  
~ b ( t , t ) ~  u0)[  - ~(t,i)u(i)~-~) i f /3 , (0>  a,(t). 

(3.18) p,(t,u)" = f ~,(t) a,(t) u'(i)12 

~l u(i)l 2 

if fl,(t)~ 04(0, 

if fli(t) > a~(t), 

(3.19) flu" _L~ 
0) ,~,(t) 

O,(t,u)" = 

' ";3,(t) 

i f f l , ( t )~a , ( t ) ,  

i f f l~( t )>adt ) ,  

by (3.17) and (3.15) we easily obtain 

(3.20) 

l fo' fo' p~p,( t ,u)÷ ~,lu'12dx + Icl~lul2dx 

----ll~,ll-~. a( t ,u)+ (llfll.Ilull-+ ,ollull~). 

Now observe that for i = 0,1 

f 
l~,l u'll. ai(t) 

O,(t,u)< 1 
zJAL, II~ 
fl,(t) u 

SO that, in any case, 

if ~,(t)<=a,(t), 

if f l , ( t )>a,( t ) ,  

(3.21) 
I 

Q,(t,u)< 2 (Izol+lz, I)(llull~ +llu'll-) • 

Next, by Landau's inequality: 

[[ u'[[® ~ 21] ¢'II'~'~II ~ If'= ,~, 
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and by the equation in (3.9) we derive 

II u" I1~ < ~ [(~,, + II c I1~)II, I1~ + 211 b I1~11 u" I1"~11 u I1'~ '~ + II [ llq. 

Hence we easily check 

(3.22) 

(3.23) 

where 

I1,'% - c,~ll u I1~ + ~11 f II~, 

I1.'11~ = (c,2 + 1)11 u I1~ + ~llfll~, 

finally by (3.20) and (3.21) we have 

I' fo' 
p~= p,( t ,u)+ , ~,lu'12,tx+ I c J r l , r a x  

(3.24) 

,~,~-~ ~11 ,., IIS + c,_.[ll [ It~ +lzol +lz, I111. t1~ + ~ l l t  II~II zol + I z, I1. 

where 

On the other hand for each x,y E [0,1] we have 

fo' (3.25) ]u(x)12-~2lu(y)]= + 2 lu'(s)12ds. 

Now three cases can occur: 

(a) fJol c(t, y)[ dr => 8/3, 
(b) there exists i E{0,1} such that a , ( t )~  6/3 and/3 , (0> a,(t), 
(c) there exists i E{0,1} such that tr,(t)>= 8/3 and [3,(0 <-< _ a,(t). 

In case (a), multiplying (3.25) by I c (t, y)l and integrating over [0,1] with respect 

to y, (3.25) yields 

,ajo f' ilullL____61 I1~ 'lcl~lul2dx + 2 ~,lu,12dx. 
p.~0 

in case (b), choosing y = i in (3.25) and recalling (3.18) we get 



VOI, 53, 1 9 8 6  LINEAR PARABOLIC DIFFERENTIAL EQUATIONS 279 

Ilu I1~- -< 11/3, I I -p , ( t . . )+ e l . ' J2dx;  

in case (c) we note that 

]u(i)12<=2Ju'(i)] 2 "+21z'F <2p,(t,u)+~lz, l% 
[a,(t)]2 = 

and hence, choosing again, y = i in (3.25), we obtain 

36 z, 12+ 4, I,, 'Fax. IlullL <-- @ , ( t ,u )+~ l  

Thus in any case we have 

(3.26) 

where 

{ + f f } IlullL_-<c,, p~__ p,(t ,u) #,lu'Fdx+ Icb, luFdx+[Iz,,l+lz, ll ~ 

Choose now 

(3.28) 

with 

m 

"° = 2cdl,/, I1-' 

then by (3.27), (3.22) and (3.23) we easily conclude that 

I I .  II- + II u'll~ + II u"ll~ = < c,~{llfll~ + I ~,,I + I =,1} 

1/2 

This proves the result provided (3.16) holds, i.e. when ]a 1_---co. Suppose now 
A E £~ and [A I => co. The following argument  is a slight modification of that in 
Acquistapace-Terreni  [2, Section 8]. Let Xo be a point of maximum for l u ] in 

c~ = max { 6,~,,~ ~,, ~,,,~ ~,, 4 ~ "~ ~' ~36/ 

By (3.26) and (3.24) we get 

II u I1:--< c,~,,  ~mll~-lt u I1~ + c.c,.[llfll~ + I z,,I + lz ,  Illl u I1~ 

(3.27) 
+ (c, . . , ,  4aJl~m ~)- [llfll~ + I ~,,I + I ~, I] ~ . 
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[0,1]; take p=[Al- 'Z2^l and let o r > l  be fixed later. Consider a function 
0 E C®(R,R) such that 

2 
0=<O=<l, O = - l i n I ~ : = [ x o - p ,  xo+p], O --- 0 outside I , ,  iO'l<=(or_l)p. 

Multiply (3.13) by ~02 and integrate over [0,1]. By estimating separately the real 
and imaginary parts, one easily gets (since ab <-_ ea2/2 + b 2/(2e ) Ve > O) 

I0 f 'f ReA ./lul20~dx + , i c l v )u l~¢dx  ÷-~ , 4,1u'l~O~dx +p p,(t,u)O(i) 2 

(3.29) 
-<- (or_ 1)~o II ~,IHI u I1: + 2oro  fll~ll.ll~+ll~li~ o,(t,u).  

(3.30) 
f' f IlmAI , ~l.l~¢dx ~ ' < , q'lu'l 2¢dx  

40" 2 + ~ t 
+ (or_l)2oll¢.ll~llul]~ 2 o ' p  I l f l l~ l lul l~+l l~l l~o,  tt, u) w>o, 

with p,(t, u), O,(t, u)given by (3.18), (3.19). 
Assume ReA _-<0; then IReA I< K-'IImA I, so that, choosing in (3.30) e = 

K/4, by (3.29) and (3.30) we easily get 

!1, 4 
(3.31) 

I O" 
4' I u ' l~ O= dx ~ C,7 (or - -1)~0 I1 u 11~ + C,~oro II f I1~1t u t1~ 

where 

! 
+ C , ~ O i ( t , u )  if ReA_-<O 

__ ( , )  c,~ 211 I1~ 1 + 2 .  c,~--I[~01l~ 1 + ~  . 

On the other hand, if Re A > 0 we can use (3.29), thus obtaining in any case 

fo I or l (3.32) 4,1u'1202dx ~4C,7(or_--1)ZptlUll~+4C,sorp]lflHlull~+4C,9~= O,(t,u). 

By (3.32) and (3.30) we have easily 

[ImA I fo' rlul202dx 
(3.33) 

_-< C2o (or -~)2p II u IlL + c=, ort, II f I1~11 u I1~ + c2~ ~ o, (t, u), 
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where 

c2,,-- KC,~ +-~11~ I1~, C2,=KC,~+ 2ll~ll~, C2~_=KC,9+II~II~. 
m 

Finally, by summation of (3.29) and (3.33) (if Re A > 0) or of (3.32) and (3.33) (if 
Re A =< 0) we check, setting Bp" = I~ fq [0, 1] and recalling that p-2 => [A I --> e,,o-2: 

~fB "Ylu21dx + f~o ~blu"2dx 
(3.34) 

o v 
--< c-,~(o. -i)=p-tl u tIL+ c,.,~pllfll~llull~ + c~5~,=o O,(t,u), 

where 

C2~=lmax{16ll~bH~+C2o,4C,7+(l+ l)cz,,}. 

Cz4=lmaxl4 ~-~+C~-"4Ct8+(I+I)cz~} t m 

C25=lmax{21lqJl[~+C22,4C,9+(l+ l)cz2}. 

On the other hand, as in (3.25) we have for each y E Bo 

IlullL=lu(xo)12<2lu(y)12+ 2 fB [u'(t)12dt.lxo- y[, 
p 

so that integration over Bp with respect to y yields 

(3.35, Ilull~<2[Hall~vl]p[~f,o .ylul202dx+ fs 6lu'rO2dx ]. 
By (3.35) and (3.34) we get 

IlullL< [llall~vl]" -'~-dz--f-~ ulli+f2'~p211fll°llull~+f2.'p~O,(t, u) • 
(3.36) 
Choose now 

then 

so that (3.36) implies 

([[a [[® v 1) C23~--z~,  ,2 < 1 
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4 [ l (3.37) IlullL~ [llall=vl] C~,~P~llfll~llull=÷G~p~O,(t,u). 
Now by (3.19) se deduce instead of (3.21), due to the endpoint conditions 
satisfied by u, 

I 

(3.38) ~ O,(t, u) _-< 

where /.L = min, [/3o(t) ̂ /3,(01. 

f 
1(I z,,I ÷ I z, I)11 u I1~ 

2(1~,,1÷ Iz,I)(llu I1~ + 11,'11~) 

(3.39) 

(3.40) 

where 
Ilu'lb ~ c~IA I"~11 u I1~ ÷ c~IA I-"~llflb, 

where 

2 
C27 : ") I"MI2 ~-,-.._6 + 1, C2~ = - -  

m 

Let us go back to (3.37). If /x > 0 by (3.37) and (3.38) it follows that 

I I , l l L ~ l l l P l l ~ + l X  I"~(I zol ÷ I :, I)lll u I1~, 

which implies 

(3.41) la l l lul l~<-_C29[l l f l l~+lxl"2(Iz , , l+lz , I )]  iftz >0;  

otherwise if/~ = 0 by (3.37), (3.38) and (3.40) we derive that 

II u IlL < ~-~[11 / I1o +Ix I(I z,,I ÷ lz ,  I)lll u I1~ + ]~-~ II f II~II zol + I z, II 

where 

C ~ = 4 [ I l a I ~ v l ] [ ( C 2 ' ° ) V ( C p  I_ \ 2'8~eo ~ ' ~ + 2 [  1 ~]//j = 1.8G, Gs, (727,,/, C3] [llall®v ] 

On the other hand, by Landau's inequality and by the equation in (3.9) we 
easily find 
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and hence 

(3.42) [All[ul[=<=(C3o+C~2)[Hfll=+lA[(Izol+lz,]) ] if/~ =0 .  

By (3.41), (3.42), (3.40) and (3.39) we get in any case when I A I => eo 

(3.43) I,lllull~÷lAll'211u'll~+llu"ll~<-_C~2lllfll~+lAl~(Iz,,l+lz, I)] 

where u is defined by (3.12) and 

I (729 (1 + C2,+ C26)+ 2C28 if /x > 0, 
C32 

C3, )(1 + C27+ C26)+2C28 if /z = 0. (C3o + 1/~ 

By (3.43) and (3.28) the result follows with 

(3.44) M = C16 ÷ C32. 

As a consequence of the above proposition, we have: 

PROPOSITIOn 3.2. Let a, b, c, ao, a,, rio, [3, be as in (3.1), (3.2); let {A (t)},~to.n be 

defined by (3.7). Then we have: 
(i) c r ( a ( t ) ) _ C ] - % 0 [  V t ~ [ 0 ,  T]; 
(ii) for each K > O there exists M (K) > O (depending also on 

a,b,c, ao, al,[3o,[30 such that 

M ( K )  (3.45) HR()t,A(t))ll~ete)<= V}t E E r ,  V t E [ 0 ,  T]; 
1+1'1 

(iii) R ()t, A (.)) E C l'" ([0, TI, Le(E)) if ;t ~ l - ~ ,0[ ,  and for each K > 0 there 

exists L ( K ) > 0 (depending also on a, b, c, ao, a ,, [30, [31) such that 

R (X, A (t)) -~(e) = 1 + IX 13/2-v V/~ • EK, Vt e [0, T l, 

where "~ and u are defined in (3.10) , (3.12). 

PROOF. (i)--(ii) Fix t E [0, T]; let us first prove that 0 E p(A  (t)). By Proposi- 
tion 3.1 we get that 0 is not an eigenvalue of A(t ) .  Let u,, u2 be the (unique) 
solutions of 

a( t , . )ug  + b( t , . )u;  + c(t,.)Uo = O, [ a ( t , . )u ;  + b( t , . )u l  + c( t , . )ul  = O, 
1 

Uo(0) = [30(0, u;(0) = adO,  I. Ul(1) = [31(t), ul(1) = - a,(t).  

As both Uo and ul solve (3.13) with ~ =0 ,  f = 0 ,  it is readily seen by 
differentiation that 
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$(t," )(u~u~ - u[uo)= const = " Q(t) 

(qJ is defined in (3.14)), and the constant O(t) cannot be zero, for otherwise we 

would get Uo, U~ E Da(,) and A(t)uo = A(t)ul = 0, which is impossible since 0 is 

not an eigenvalue of A (t). Hence it is easy to verify that for each f ~ E the 

function 

1 x (Y)/(Y)a(t 'y)dy ] .(x,- fo f' ., 
is a solution of (3.9) with A = 0, zo = Zl = 0. Thus by Proposition 3.1 we have 

OEp(A(t)) .  Recalling now that A Ep(A( t ) )  provided AoEp(A(t))  and 

IX--XoI<IIR(Ao, A(t))II-~',E), by a standard argument we deduce that XKC_ 
p(A(t))  and (3.45) holds for each A E ]~K with a suitable constant M(K). This 

proves (i) and (ii). 
(iii) Set for each t E [0, T] and g E C2([0,1]) (here D denotes the derivative 

with respect to x): 

A (t,. D )g = a(t,. )g" + b(t,. )g' + c(t,. )g, 

F(t, D )g = (ao(t)g(O) - flo(t)g'(O), a,(t)g(1) +/3,(t)g'(1)), 

and, for fixed A E ~K, [ E E, 

u(t , . )=R(A,A(t))[ ,  v(t,s,.) = u ( t ' ' ) - u ( s ' ' )  t, sE[O,T],  t#s .  
t - - S  

The functions u( t , . ) -  u(z,.)  and v( t , s , . ) -  v( t ,m')  solve respectively 

[A - A( t , . ,O)][u( t , . ) -  u(7,.)] = [A( t , . ,D) -AO' , .D) ]u ( z , ' ) ,  

(3.46) F(t ,O)[u( t , . ) -  u( , , . ) ]  = - [ r ( t , O ) - F ( , , O ) ] u ( , , . ) ;  

I x  - A(t,.,D)l[v(t,s,.)- o ( t ,  c r , . ) ]  

= A(t," , O ) -  A(s, ",O)[u(s, .)  - u (o',')] 
I - - S  

(3.47) + [ A ( t , "  D ) - A ( s , ' , D )  a ( t , . , D ) - A ( c r , ' , D ) ]  ' - u ( ~ , ' ) ,  
t -  s t - t r  

r(t,D)[v(t,s,.)- v ( t , o - , . ) ]  = -r(t'D)-r(s'D)[.(s,.)- .(~,.)] 
t - - S  

_ [r(t,D)-r(s,D)_r(t,D)-t_s t -  F((r,D)] u ((r,.). 
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As the coefficients of A (t,., D) and F(t, D) are differentiable in t, by (3.46) and 
Proposition 3.1 we check (denoting by D the derivative with respect to x): 

[1 + IA I111 u( t , . ) -  u(~,')lb 

+ [1 + IA I " q l l D u ( t , ' ) -  Du(7",')II= + I ID~u( t , ' )  - D2u( r , "  )11° 

M .  It - ~ I (CAI  ~,(~,)l lc~,M, + C~,(1 + I A I~)11 u(~-,.)llc,,~o,,d 

<= M~-(C~ ,, C , , + ) l t - , l i t  +IA  I~-"qll/ l l+, 

where v is defined in (3.12), M is given by (3.44) and 

C33 = max / sup Ila(',x)llc',,o.T~,, sup IIb(',x)llc',,.T~,, sup IIc(',X)IIc',Io.TD I, 
L x~lO, q x elO.q • ElO,q / 

C34 = max {11 ~o IIc',[o+ ~j,, II ~, lIe ',lo.+l,, II/% IIc'<Io.,1>, II P, IIc',Io.+,, }. 

Similarly by (3.47), using (3.48) we get 

IX + IA Illlu(t,s,  ) -  v(/, ~,)11+ + [1 + IA 1"2]tlDv(t,s," ) - Ov(t , , , , .  )lb 

+ I IO%( t , s , ' ) -  O:v(t ,  ~ , . ) b  

_-< M.  1[C3311 u(s,. )-  u(o-,. )llc2,o.,D + C,l s - ~ I n II u(~, .  ) l l : , , . ,d  
(3.49) 

+ [1 + I A I v] [c3411 u(s,. ) -  u(~,-)llc,,,o.+ + C~+l s - ~ I n II u(~, .  )llc,,,o.,d 

< C ~ , l s  - ,, I '(1 + IA I~"-')llfl l~ 
where 

C35 = max / sup Ila(',x)llc'+,.Tl,, sup IIb(',x)llc'~,~O.~l,, sup IIc(',x)llc'.,,o.~,,}, 
L x~lo.q ~lo,  q ~lo, q 

C36 = max {II ':'o llc'.",,,,.',-~,, II '+, llc'.",o. +,., II Po llc'.",to:,+D, II ,e, llc'.",o.~d, 

C37 : 2M+{M(C++ v C34)(C3.~ + C34) + C3+ + C3+}. 

By (3.49) we deduce that there exists 

d u(I,.)=-~R(A,A(I))[ w(t,. )= lim v(t,s,. )=-~ 

in the CLnorm and by (3.48) we check as ~ '~  t 

[1 + IA I]ll w(t, ,)lb + [1 + IA I"qllDw(t,')lb+ IID~w(t,')ll+ 
(3.50) 

<= M2(C33v C34)11 + IA I~-"qll/ l l~ 
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which implies in particular 

13/2-v (3.51) R(,LA(t)) ~,,~, 1+14 

with L(K) = 2M2(C~3 v C,4). 

To conclude the proof of (iii) we have to show that 

t -+-~R(X,A(t))E C" ([0, T],~T(E)). 

Now observe that by (3.46) it follows that w(t,-) is the solution of 

[A - A(t,. ,D)]w(t,.)= ,~ (t,. ,D)u(t,.), 

(3.52) F(t, D)w (t , ' )  = - ['(t, D )u (t,.), 

whereas w (t, ' )  - w (r , .)  solves 

(3.53) 

[~ - A (t,. ,D )][w(t,. ) -  w(r, ' ) ]  = A (t,. ,D )[u(t,. ) -  u(r , . ) l  

+ [A(t,. , D ) -  A(r, .  ,D)]u(r , . )+  [A(t,. , D ) -  A(r, .  ,D)]w(r, .) ,  

F(t,D )Iw(t,. ) -  w(r, . ) ]  = - I'(t,. ,D )[u(t,. ) -  u(r , . ) ]  

- i t ( t , . ,  D )  - r(~-,., O)]  u (~- , . ) -  I t ( t , . ,  D )  - r(~-,., O)]  w (,,-,.); 

where 

C3~ = M2(4M(C33 v C34)(C33 + C3,)+ C3s + 2C36); 

this in particular yields the result. 

By Proposition 3.2 we see that the operators {A(t)},~o,rl defined in (3.7) 

in (3.52) and (3.53) we have set for g E C2([0,1]) 

~9a. t )g,, + cgb. t , , c9c ~i,(t,.,D)g = ~ ( , .  -~t,.)g + - ~ ( t , . ) g ,  

['(t, D ) g =  ( ~ff~(t)g(o)- d~d~(t)g'(O),ffff¢(t)g(1)+ d~d/ g'(1)). 

By (3.53), Proposition 3.1, (3.48) and (3.50) we readily obtain 

I1 + la I]11 w(t,.)- w(~,.)tto 

(3.54) +[l+lXll 'Z]l lOw(t , . )-Ow(~, .) l l~÷llO2w(t , . )-O2w(~, .) l l~ 

<= C3~lt-rl'(l + lA 12v-1)llfll~ 
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actually satisfy Hypotheses I, II (with a = 1/2 if /~ = 0, and any a E ]0, t[ if 
/z > 0) and III. On the other hand it is easy to see, by (3.5), (3.6) and (3.11), that 
the operators {A (t)},~lo, q and {B(t, s)}o=,<,_~r defined in (3.7) and (3.8) also fulfil 
Hypothesis IV. 

In order to apply the results of Section 2 to problem (3.1), we need to 
characterize the spaces Dato) and Dato)(0,oo), 0 E ]0,1[. 

It is easy to see that for each t E [0, T] 

C([0,1]) if /3o(0^/3. ( t )> 0, 

(3.55) DA~,,= {u~C([O,1]):u(i)=O} if/3,(t)=0</3j(t), 

{i,j} = {0,1}, 
{u E C([0 ,1] ) :u(0)=  u ( l ) =  0} if /30(0 = f l , ( t )=  0. 

On the other hand it is known that if 0 E ]0,1/2[ 

(3.56) Da(,)(0,~) = C 2° ([0,1]) n Da(,), 

whereas if 0 E ]}, 1[ 

Da(,,(O, oo) 
(3.57) = {u E C'"~°-'([0,1]): a,,(t)u(O)- ~o(t)u'(O) = a,(t)u(1)+/3,(t)u'(1) = 0}; 

finally in the special case 0 = ½ one obtains 

if Oo(t)^fl,(t)>O, 

Jlu~C*"([o,1]):u(i)=o, sup lu ( ,xx) -u(J ) [<~/  
(3.58) Da(o(½,~) = / [ xE[O, ll-{j} I -11 k 

! 
/ if [3,(t)=O<fli(t),{i,j}={O, 1}, 

{u E C*' ([0,1]): u(0) - u (1 )=  0} 

[ if /30(O=fl~(t)=O, 

where C*'~([O, 1]) is the "Zygmund  class" of functions, defined by 

C*"([O, 11)= 

{ u E C ( [ O , 1 ] ) : s u p l U ( X ) + U ( ~ - 2 u ( ( x + y ) / 2 ) l ' x ,  [0 ,1] ,x~ y } 
- y l  " Y~  < ~  " 
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In the case 13o(t) =/3t(t) = 0, the characterizations (3.56), (3.57) are proved in Da 
Prato-Grisvard [11] and Lunardi [24], where also a proof of (3.58) can be found; 
when/3o(0 ^/3~(t) > 0 the proof of (3.56) and (3.57) is in Acquistapace-Terreni 
13, Section 6], whereas (3.58) is proved in Acquistapace-Terreni [5]. The 
remaining cases (/3,(0 = 0 </3j(t), {i,/} = {0,1}) have not been proved explicitly: 
however the proof follows in a standard way by employing the procedure of [5] 
relative to the case 0 -- ½ in the one-dimensional setting described in [3, Section 
6]. 

Let us go back now to (3.1). Assume that 

{ f~C(IO, TIx[O,1]) and sup If(t,x)-f(s,x)l<-_[fl~tt-sl '~ 
(3.59) x~l,,.zl 

Vt, s E [0, T] (o" E 10, r I ^/3 ]); 

(3.60) I qj E C2([0,1D and 

t ao(0)6(0)-/3°(0)6'(0) = a,(0)q,(1)+/3,(0)4,'(1) = 0. 

By Theorem 2.1, a unique strict solution of (3.1) exists if and only if condition 
(2.1) holds; in addition, by Theorem 2.2, such a solution belongs to 
C ' "  ([0, T ] ,E)  n C* ([0, T], Da,.,), 6 E ]0,cr], if and only if condition (2.16) holds. 
Thus we have only to write down the concrete meaning of conditions (2.1) and 
(2.16) in the present situation. 

Set 

] A,0,  w A (t)-' ,=,, 

Then w is in C2([0,1]) and solves 

f a(O,x)w"(x)+ b(O,x)w'(x)+ c(O,x)w(x) 
aa ,, ab , ac =-~(0,x)~0 (x)+~(0,x)q, (x)+-~(O,x)q,(x), x ~[0,1], 

(3.61) 
,~°(o) w (o) - /3°(0)  w '(o) = - ,~ ~(o)q, (o) +/3,',(o) q,,(o), 

o~,(O)w(1) + /3 , (0 )w'0 )  = - ,~ ~(0)~,(1)-/3 l(0)q, (1). 

Consequently it is easy to see that condition (2.1) is automatically true if 
/3°(0)^/3~(0)>0, otherwise it becomes respectively: 

f(0, 0) + a (0, 0)~O"(0) + [ b (0, 0) ao(0) ] ~'(°)  = 0 
I 

(3.62) if/30(0) = 0 </3,(0), 
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(3.63) 

f(0,1) + a(0,l)~b"(1)+ [b(0,1)+/3~(0)]  t0'(1) = 0 a,(O) 

if/3o(0) > 0 =/3,(0); 

finally if/3,,(0) =/3,(0) = 0 then (2.1) is equivalent to both (3.62) and (3.63). 
The meaning of condition (2.16) is a little more involved: set 

(3.64) g=f(O,.)+ A(O)~b=f(O,.)+a(O,.)~b"+b(O,.)q,'+c(O,.)qJ; 

then we have 

A(O)~b+f(O, . ) -[dA(t)  -'] = _ , = a ( 0 ) ~  g w, 

where w is the solution of (3.61). As w E C2([0,1]), g - w belongs to Ce([0,1]), 
C*"([0, 1]), C"e([0,1]) as soon as g does; hence it is easy to see that condition 

(2.16) is equivalent to: 

(3.65) 

g E C -'~ ([0,1]) 

g E C2" ([0, l]) and (3.62) holds 

g E C2~([0,1]) and (3.63) holds 

g E C 2~ ([0, 1 ]) and both (3.62) and (3.63) hold 

if/3o(0) A/3,(0) > 0, 

if /3o(0) = 0 </3,(0), 

if /30(0) > 0 =/3,(0), 

if /3o(0) = /3,(0) = O, 

if 8 E 10, 1/2[; 

(3.66) g E C*"([0,1]) and 

I .  if 8 =~, 

g E CnZS-'([0, 11) 
(3.67) 

sup I ) ) l . g ( x - g ( 0 < ~ ,  sup [g(x)-g(1)] < oo 
x~lO, q X ~[o,q 1 - x 

if/30(0) ^/3,(0) > 0, 

I g ( x ) -  g(1)[ < ~ and (3.62) holds s u p  
x~lO31 1 -- X 

if/3o(0) = 0 </3,(0), 

sup I g ( x ) -  g(0)[ < ~ and (3.63)holds 
xclO31 X 

if/30(0) > 0 =/3,(0), 

(3.62) and (3.63) hold if/3o(0) =/3,(0) = 0, 

and I ao(O)g(O)-/3o(0)g'(0) + a~,(0)~b(0)-/3 ~(0)~b'(0) : 0, 

t a,(0)g(1) +/3,(0)g'(1) + a l(0)~b(1) +/3 I(0)6'(1) = 0, 

if 8 El½,1[. 
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Now we are ready to state the final result. 

THEOREM 3.3. Assume that (3.2), (3.3), (3.4), (3.5), (3.6) hold and let f ( t ,x) ,  

~b(x ) be functions satisfying (3.59), (3.60). Then: 
(i) if /3,,(0)^/3,(0)>0, problem (3.1) has a unique strict solution u E  

C'([0, T l x [0, 11) such that uxx ~ C([0, T l x [0, ll); 
(ii) if/3,,(0) = 0 </3,(0) (resp. /30(0) > 0 =/3,(0)) the conclusion of (i) is true if 

and only if f and ~b satisfy (3.62) (resp. (3.63)); 
(iii) if /3,,(O) =/3,(0) = 0 the conclusion of (i) is true if and only if l a n d  ~b satisfy 

both (3.62) and (3.63); 
(iv) if the strict solution u exists, then 

l C" (]0, T]) uniformly in x if ix > 0 
Ut (. ,  ), X Uxx (.,  X ) @ 

I 
I. C~^O/2)(]0, T]) uniformly in x if ix = 0 

where ix = min,El,,.rl (/3,,(t) ^/3,(t)); 
(v) if the strict solution u exists, then 

• C" ([0, T]) uniformly in x if ix > 0 

C'^"/2~([0, T]) uniformly in x 

if and only if f and ~ are such that 

//ix = 0  

where the function g, appearing in (3.65), (3.66) and (3.67), is defined by (3.64). 

Second Example 

Let f~_C R" be a bounded connected open set, with boundary 0~  of class C 3. 
Consider the differential operator 

(3.68) a ( t , x , D ) =  2 a,,(t,x)Dx,Dx,+ 2 b,(t,x)Dx, + c(t,x)I,  
i,j=l i=l 

(t, x) e [0, T] x fi, 
under the following assumptions: 

(3.65) holds with ~ = or if or E ]0,{[ 

(3.66) holds if cr = ½ 

(3.67) holds with 8 = cr (resp. (3.66) holds) if or E]½,1[ and 

ix > 0 (resp. ix = 0), 
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(3.69) 

(3.70) 

Consider also the boundary differential operator 

(3.71) F(t,x,D)= ~ [3,(t,x)Dx, + a(t,x)I, 
i = 1  

where it is assumed that 

a,j,b,,c E C([O, T] x l~,C); 

ao(", x), b,(. ,x) ,c( .  , x )E  C"" ([0, T],C) 

with bounds independent of x (7/E ]0, 1[), 
rl 

Re,~,v: a'j(t'x)~'~'>=N[~[2 Vs~ER"' Vtcl0'Tlxfi 

Ob, Oc~ C([O, T] x fi,C), 
ot ' Ot ' ot 

(N > 0). 

( t ,x)E [O, T] x Oil 

/3 = (/3, ..... /3.)E C'([0, T] x OIl, R"), a E C'([0, TI × off, R), 

2 . cga • C (Of~,R),a(t,.),-~-[(t, )~  C'-(On, R) fl(t, '),ot(t, )E  

(3.72) with bounds independent of t, 

fl(. , x )E  C"" ([0, TI,R"), a (. , x )E  C"" ([0, TI,R) 

with bounds independent of x, 

(3.73) a(t,x)>=O, ~ ( t , x ) v , ( x ) >=8 o  V( t ,x )E[O,T]×af l  (80>0) 
i = l  

where v(x)=(ul(x)  ..... u,(x)) is the exterior normal unit vector at x E 011. 
Next, define for 0 < s < t < T 

n 

(3.74) B(t ,s ,x ,D)= ~__ p,(t,s,x)D,, + q(t,s,x)L x Eft ,  

where we suppose that: 

p,q are complex-valued functions, defined in 

{(t, s, x) :0 _<- s < t =< T, x U (l}, measurable with respect 

to (t,s), continuously differentiable in x, and such that: 

" H 
(3.75) ~',Z't Ip,(t,s,x)[ + [q(t,s,x)l <= (t - s) '-~ 

Vt E ]0, T], ¥s ~ [0, t[, Vx E (l, or, alternatively, 

fo' [,:~ l ' / ( , - l l )  sup le,(t,s,x )l + supl q(t,s,x )l .~n ds <= H 

Vt EIO, T] (H > 0,/3 E 10,1[) 
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and 

(3.76) 

n 

~su.j~ Ip,(t,s,x)- p,(r,s,x)l + suplq(t,s,x)- 

<-_(t-r)"d~(r,s) Vt, r e ]0, T], Vs ~ [O,r[ 

where /3 is the same as in (3.75) and ~b(r,s) is a function such that 
Ho:sup,~)o.rl f~ ck(r,s)ds < oo. We want to apply the results of Section 2 to the 
problem 

u , ( t , . ) -A ( t , . ,D)u - [o  B(t,s,.,D)uds - - [ ( t , . )  in •; te[O, rl, 

(3.77) r(t,.,D)u = 0  in Oa; te[O, rl, 

u(O, ' )=  ~ inl~,  

with prescribed data f, ~b. 
Set E = C(h),  II u lie = sup, En J u (x)l = : II u I1~; define for each t E [0, T] 

Da.)= {u E n H2"q(fl):A(t,',D)u E C(~),F(t,',D) u -O in Of)'}, 
(3.78) '-~"<® 

A(t)u = A(t,. ,D)u; 

On,,,)= (u E C(fi)'B(t,s,. ,O)u E C(fi)}, 

(3.79) B(t,s)u = B(t,s,. ,D)u. 

In order to verify Hypotheses I, II, III and IV in the present case, we first 
consider the operators {A(t)},e[o, rl. We have 

PROPOSITION 3.4. Suppose that (3.68), (3.69), (3.70), (3.71), (3.72) and (3.73) 
hold, and let {A (t)},etO.rl be defined by (3.78). Then there exist to, K, M, L > 0 such 
that 

(i) o '(A(t))_D~K.,:={A EC:ReA_->to}U{A E C : I I m A I > K I R e A - t o l }  

Vt E [0, T]; 

(ii)  [1 + IA - to f]llg(x,A(t))fllE 
n 

+ [1 + IA - to 1"2] ~ IID,,R(A,A(t))flIE <= MllfllE 

v f  ~ E, vx ~ .V.,,,., vt ~ [o, T]; 

(iii) for each A E EK,, we have R (A ,A( . ) )E  C 1'" ([0, T ] , ~ ( E ) )  and 

R(A,A(t)) .,~,--<l+l,~-tol vxer,,,,., Vte[O,T]. 
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PROOF. This result is due to Stewart [33] in a very general situation; a 
simplified proof for the present case can be found in Acquistapace-Terreni [1, 
Section 6]. Thus Hypotheses, I, II (with any a E ]0,1D and III are fulfilled by the 
operators {A ( t ) -  toI},~io,r I (and not by {A(t)},~lo.rj). On the other hand, by 
(3.75), (3.76) and Proposition 3.4(ii) it is easily seen that the operators 
{B(t,s)}o~<,~r and {A ( t ) -  toI},~io.r I also satisfy Hypothesis IV. 

Let us characterize the spaces Dato~, DAto)(0,oo) (0 E ]0, 1 D, obviously coincid- 
ing with DAt0)-,~, Dato)_~(0,oo). In Acquistapace-Terreni [5] it is proved that 
under the above assumptions 

C2°(~) if 0 E ]0,½[, 

(3.80) D,~,)(O, oo)= x~OfL~>O,x - t r l3 (x )E f i }<oo}  if o=½, 

u 

] 

. } a( t , ' )u -~ f l , ( t , . )Dxu  - 0  in On i f~ ]0 ,½[ ,  

where the Zygmund class C*"(I~) is defined by 

-yl 

This in particular shows that 

(3.81) Oat,, = C(•). 

Now take the data [, ~b such that 

(3.82) [EC([O,T]x f i )  and suplf(t ,x)-[(s,x)l<=[[]~lt-s] ~ 
x ~ t l  

Vt, s E [0, TI (o" ~ lO,~ 7 A/31), 

(3.83) ~b ~ I'~ H2"q(f~),A(O,',D)~b ~ C(fi), 
l--~q<~ 

F(O,.,D)~b---O in 011. 

Clearly, by (3.81), condition (2.1) is always true in the present situation. About 
condition (2.16), set 

[' ] (3.84) w= -~A(t)- '  A(O)~b, g=[(O,.)+ A(O,.,D)~b, 
f=O 

so that 
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A(O)$ + f ( O , . ) - [  d A ( t )  - '] ,=, ,A(O)$= g - w .  

The function w solves 

a ( o , . , O ) w  = V ' =  2 0-~a~ ( 0` 2 0b'(0,')O*4' + 0c 0 ~=~ ~ (  ,')4' in 1), ,.j=~ at " )D~ Dxj4' + Ot ' 

Oa .O " " r(O,. D )w = O " = - -g i t  ,. ~, - ~ O-Ao/(O,. )D,,4' in0fl ,  

and obviously F E N i~q<* L q (11), G E N ,~q<. H l-t~*q (Off). This clearly implies 
w @ I"1,~,~ H-""(I1), and hence w E i"1,, ...... , CZ"(~l). Consequently, g - w be- 
longs to C*(fi), C*"(fi), C"*(I)) as soon as g does. Therefore we easily derive 
that condition (2.16) is equivalent to: 

g ~ C~'(fi) if a E]0A[, 

*"(fi) and sup ~ [ g (x) - g (x - /3 (x))l. g E C ( or 

(3.85) xEOFt ,  o r > O , x - o r / 3 ( x ) E f i } < o o  ira =½, 

g E C"2~-'(fl) and a(O,.)g + ~/3,(0, .)D~,g 
i=! 

+ Oa "0 " " N( ,.;,+~-~t'(0,.)D,,4'-0 in0a, ifSel½,1[, 

Hence we can conclude with the following 

THEOREM 3.5, Let II G R" be a bounded connected open set with boundary Ofl 
of class C 3. Assume that (3.68), (3.69), (3.70), (3.71), (3.72), (3.73), (3.74), (3.75) 
and (3.76) hold, and let f(t, x ), 4' (x ) be functions satisfying (3.82), (3.83). Then: 

(i) problem (3.1) has a unique strict solution u E C'([0, T] x (~) such that 
u e C([O, TI, I4~"(a)) Vq E[1,~[, and A ( . , . D ) u  E c([o, TI x fi); 

(ii) the strict solution u satisfies in addition u E C'(]0, T], H 2'q (II)) Vq ~ [1, ~[ 
and u,(. ,x  ) ,A  (. , x , P  )u E C"(]0, T]) uniformly in x; 

(iii) the strict solution u satisfies u E C'([O,T],H24([I)) Vq E[1,~[ and 

u,(. , x ) , A ( .  , x ,D)u  E C~([0, T]) uniformly in x, if and only if f and 4' are such 

that (3.85) holds with 8 = or, where the function g, appearing in (3.85), is defined 

in (3.84). 

Appendix 

We will use here the same notations as in Acquistapace-Terreni [1]. Under 
Hypotheses I, II, III consider the problem 
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u'(t)-A(t)u(t)=/:(t), t ~]0, TI (resp. t ~[0, T]), 

(A.1) u(O) = x, 

where xEDa~o), [EC([O,T],E)AC~(]O,T],E) (resp. xEDa~,,j, f E  
C~ ([0, T], E) and A (O)x + f(O) - [(d/dt)A (t)-'],=oA (O)x E DA,o,), and cr E ]0,1[. 
By [1, Theorems 4.1 and 5.1] a unique classical (resp. strict) solution u of (A.1) 
exists and is given by 

So (A.2) u(t) -- e'A~°x + e~'-~A"~g(s)ds, t e [0, r l ,  

where g is the unique solution of the integral equation 

f, (A.3) g(t)+ P(t,s)g(s)ds = [( t ) -  P(t,O)x, t E [0, T] 
I 

with P(t,s) defined by (1.4). 
In [1, Theorems 4.1, 5.1 and 5.3] it is shown that if ~ E ]0,rt[ n ]0,a], then 

u' ,A( . )u( . )~C'(]O,T],E)  (resp. u',A(.)u(.)~C~([O,T],E) provided 
A (O)x + [(0)- [(d/dt)A (t)-'],=oA (0)x E Da~o~(o-,oo)). We want to prove here a 
slight refinement of these results, namely that the same conclusions hold if 
o,  ]0,n ^ o,]. 

In addition we will prove estimates (1.5) and (1.7) for A (.)u (.) and u', which 
were not explicitly stated in ]1]. Let us begin with some refinements of the results 
of [1, Section 3]. 

LEMMA A.1. Set P$(t) = floe(t,s)ck(s)ds, t E [0, T]. Under Hypotheses I, II, 
III we have: 

(i) if& E L '(O, T;E)O C*(]O, TI, E), ~ ~]0,1[, then Pck E C'^°(]O, T],E); 
(ii) if 4~ E C'([0, T],E), 8 E ]0, 1[, then POE C"^~([0, T],E). 

PROOF. (i) Let t> r=>e .  We have 

Pck(t)- Pck(r) = f '  P(t,s)ck(s)ds 

f fEI2 • 
+[J0 + f~/2 ] ~ / f ,  e" -""[OR( ' t 'A ( t ) ) - -~R("A(r ) ) ]  [&(s)-ck(r)]d'ds 

(A.4) + 12¢ri I~ ~ -lel' , ,-~,2,,_e,,-~,~][_~R(1,A(t))_OR(1,A(r))]cb(r)dl 

[/? "lr + + ~/2 ]J,-~ 2--~f, ?te"-~zR("A(r))d~(s)d~td'ds; 
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consequently (by [1, formula (1.3) and Lemma 3.1]) 

U P ~ ( t ) -  P4,(z)IIE ---- c I l ~  I[¢(I,.T,.E)(t -- z)  ~ 

+ C(~)[il  4' 11, '0,.~,2:~ ÷ 116 IIc,l,.Tl.~,] [(t -- Z)" + (t -- Z)] 

f [  ] + 4 ~, lie',t,,-, T~ E, ( t -  z ) '+  t - z  /2 t - s (t - - s ~  -~ (z - s)+ds 

+ ell~, IIc,~, T~.~,t(t - z)" + (t - z)((t _ e/2) ' -~1 (t _ r),_s ) ] 1  

+ c(~)ll 4, IIL,,o,,2;dt - z )+  cll~, IIc,t,,2.,~.~, /-~_~ds 
/2 - s  

<- c ( e ) [ ( t  - z )"  + ( t  - z)~] .  

(ii) Let t > r => 0. By (A.4) we get 

11P~b ( t ) -  P~b(z)lle =< climb ][C'{Io.T].E,{ ( t -  Z)" + fo~[ t-~--Z-~ + t - -Z 1 t t - s  ( t - - s ~  -°  j ( z - s ) ° d s  

(A.5) + (t - r)" + (t - r) -I- (t r) ' -" + - ),, j ,_ ,  ~: ] 

--< c114, Ilc*,lo.~l.~,[(t - z )"  + ( t  - z)~].  

LEMMA. A.2. Set ~b = (1 + P)-'qk i.e. ~b + P~ = qb. Under Hypotheses L II, III 
we have : 

(i) i f 6  E L '(O, T ; E ) A  C'(]O, T] ,E) ,  8 E]0,1[, then ~b E C'^'^~(]O, T] ,E);  
(ii) i f 6  E C'([O, T] ,E) ,  8 El0,1[,  then ~ E c'^"^°([0, TI ,~ ) .  

PROOF. (i) It follows by [1, Proposition 3.6(ii) and 3.5(iv)], Lemma A.l(i) and 
the integral equation ~ + P~b = 4~- 

It follows by [1, Proposition 3.6(i) and 3.5(v)], Lemma A.l(ii) and the integral 
equation ~ + P~ = ~b. 

LEMMA A.3. Set Tqb(t)=f'oe"-')A"Vp(s)ds. Under Hypotheses I, II, III we 

have: 

(i) if 6 E L ' ( O , T ; E ) O C ~ ( ] O , T ] , E ) ,  ~5 E ]0,1[, then TqbE 
c ',"^~ ̂ °(]0, T], E) ;  

(ii) if qbECS([O,T] ,E) ,  8~10 ,  q ,  and moreover ~b(0)=0, then 

T6 E C'"^'^~([0, TI, E). 

PROOF. (i) By [1, Proposition 3.7(iv)] we have Tdp E C'(]O,T],E) and for 
each t E ]0, T] 
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(A.6) (T~b)'(t) = fo' A(t)e"-')A")Ic~(s)-qb(t)]ds + e'A")~b(t)+ rjo, P(t,s)c~(s)ds. 

Let t > r _-> e. As in the proof of [1, Proposition 3.7(vi)] we have 

(A.7) I f°' A(t)e~'-')~(')[ck(s)-ck(t)]ds- f°~A(r)e"-~)"~')[¢(s)-¢(r)]ds]l~ 

<-_ c ( ~ ) ( t  - ~y ,  

(A.8) ] le 'A° 'qS( t )  - e'A"'¢0-)IIE ~ C ( ~ ) ( t -  ~')', 

whereas by Lemma A.l(i) 

(A.9) [[fo' P(t,s)q)(s)ds- fo~P(r,s)¢(s)dsllE< c(e)(t-r) "~. 

By (A.6), (A.7), (A.8) and (A.9) the result follows. 
(ii) By [1, Proposition 3.7(vii)], Tel)E C1([O,T],E) and (A.5) holds for each 

t E [0, T]; in particular (T&)'(0)= 0. Now let t >  r >0. As in the proof of [1, 
Proposition 3.7(vii)], we get 

(A.10) I~°'A(t)e"-"A("[4)(s)-¢(t)lds- f°'A(r)e('-s'A'~)[4)(s)-4)(r)]ds E 
-<- cll,/, Ilc~,to.Tl.E)(t- ~-)', 

(A.11) I l e ' a " ) 6 ( t )  - e 'a")6(r) l l~  --< cll6 Ilc,(zo Tz.~(t - r ) ' ;  

on the other hand Lemma A.l(ii) and (A.5) yield 

fo , , ,  (A.12) P ( t , s ) ~ b ( s ) d s  - P ( ~ , s ) ~ , ( s  <: cll~ IIc',,o.~.~,(t - ~')'^°, 
) E 

and the proof is complete. 

We are now ready to prove our regularity results. We will always assume 
Hypotheses I, II and III. 

THEOREM A.4. If x E DA(O) and f ~ C([0, T], E) n C~'(]0, T], E), o- E ]0,1[, 
then the classical solution u of (A.1) belongs to CL~^~^~(]0, T],E). 

PROOF. By [1, Theorem 4.1], problem (A.1) has a unique classical solution 
u(t), which is represented by (A.2). Now, by [1, Proposition 3.4 (i)-(vi)], 
t~e'A(°xEC~'~(]O,T],E). On the other hand, by [1, Proposition 3.6(iii)], 
P(.,O)x EL'(O,T;E)O C'(IO, TI, E), so that f-P(.,O)x EL'(O,T;E)O 
C"^" (]0, T],E); consequently Lemma A.2(i) yields g = (1 + P)-~(f- P(. ,0)x) E 
L~(O,T;E)NC¢^'^"(]O,T],E), and finally by Lemma A.3(i) we get TgE 
c '~^"^°(lo, T], E). 
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THEOREM A.5. If x E Da(o), f ~ C"([0, T], E), o" E ]0,1[, and moreover 

[' ] A(O)x +f(0) -  NA( t )  -l A(O)x ~ O~,,,), 
t = 0  

then the strict solution u of (A.1) belongs to C"~^'^°(]0, T],E). 

PROOF. By [1, Theorem 5.1], problem (A.1) has a unique strict solution 
which is given by (A.2). The result follows by Theorem A.4 since u is, in 
particular, a classical solution. 

THEOREM A . 6 .  If x E DAto), f G C"([0, T],E), o" E ]0,1[, and moreover 

d 
A(O)x+f (O) - [ -~A( t ) -  ],=A(O)xEDa,o,, 

then [or each t, E ]0, T] the strict solution u o[ (A. 1) satisfies for each p ~ ]0, "0 [ 
( ~ ^ a A p  

(.)u(.  ) -  A (O)x II~ = c,/~---PP [llA (O)x lit + Ill h o  T, ~)1 IIA 

with C, independent of h. 

PROOF. The function u is given by (A.2), so that 

[ ' A (t)e'A(')x + fo A (t)e"-~)A(')[g(s) - g(t)lds 

A(t)u(t)= +[e'A")-llg(t), if t e l 0 ,  r], 

A (0)x, if t = 0. 

Now by a recognition of the proof of [1, Theorem 5.1] it is not difficult to see that 

A (t)e'At"X = O(t ~^" )IIA (O)x lie + e'a'°)A (0)x 

-tA(O)e'a(°)[ d a ( t ) - I  ] ,=oa(0)x as t---> 0 +, 

fo' a (t)e"-s'""'[g(s)- g(t)}ds = O(t . . . .  ~)~_ p{ll a (0)x 11~ + Ilfllc.,,,.,,,.~,} 

+[tA(O)e'a'°'-e'a'°'(e'a'°'-l'][-~ a( t , - '  ] ,=o a(O)x as t---> 0 +, 

(e'a")- 1)g(t) = O(t . . . .  ")[11A (O)x tie + Ilfllc~,lo,,,1,E)] 

-F (e tA(°)- 1)f(0)+ (e 'A(°)- l ) ( e  'A(°) - 1)[ d A(t)_~ ],=oA (0) x as t ~ 0  +, 
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so that as t~0 + 

A (t)u(t)-  A (O)x = O(t . . . .  °)~_0[llA(0)xllE +lljrll¢o,~,,.,,~.E,l 

+(e 'a'°'- 1 , [ a  (0)x + j r (O)-[da( t )  -' ],=,a(O)x], 

and the result follows. 

Concerning maximal regularity of the strict solution, we have finally: 

Letx E Dato) andjrE C~([0, T], E), o" E ]0,7 ^ ul; suppose in THEOREM A.7. 
addition that 

A(O)x +jr(0)- -~iA(t)-~ A(O)x E DA,O), 
t = 0  

and let u be the strict solution ojr (A. 1). Then u E C ~'~ ([0, T], E) if and only ijr 

A (O)x + [(O)- [ d A (t)-' ] ,=oA (O)x E Da'°'(cr'°°)" 

Moreover if this is the case, then 

II u' IIc',to.T~.E, + II a (')u (")llc.,~o.TjE, 

=< C2{][A (0)x lie+ ]]jrllC~tlO.Tl.e) ÷ A (0)x+ j r ( 0 ) - [ d a  (t)-' ],=oA (0)x O,,o,,-.=,}" 

PROOF. Consider the following problem: 

t [d A ] z ' ( t ) -A( t ) z ( t )=  A(O)x +7(0)- ~-~ (t)-' 

z (o)  = o. 

A (0)x, t ~ I 0, T], 
t = 0  

By [1, Theorem 5.1] it has a unique strict solution z, given by 

(A.13) 

Define now 

(A.14) 

z(t) = fo' e"-S)a°)h(s)ds' 

h = ( l +  e)-l( a(O)x + [(O) - [ d a  (t)-' ],=oa(O)x). 

w(t) = u( t ) -  z ( t ) -  A(t)-IA(O)x, 
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we claim that w E Cz'~([O,T],E). Indeed, w is the strict solution of 

w'(t)- A (t)w(t) = ~b(t): = [ f ( t ) -  f(0)] 

- [ d  A(t)- ' -  [ d  A(t)-'],.o]A(O)x, t ~ (o, T], 

w (0) = 0, 

and hence w(t) = T(1 + P)-14~, where qb satisfies ~b E C~([0, T],E) and ~b(0) = 
0: hence our claim is proved by Lemmata A.2(ii) and A.3(ii). Moreover by 
(A.10), (A.11) and (A.12) we easily get 

(A.15) II w' IIc°,[o.Tj,~ + !1 m (-)w (.)llc.(to, T~.~) _-__ C{[/]c=,lo,TJ,~)+ 11A (0)x lit }. 

Thus, by (A.14) we deduce that u~CI"([O,T],E) if and only if z ~  
CL"([0, T],E). Now, by (A.13) and [1, Proposition 3.7(v)], we have 

fo' z'(t) = A(t)e"-')A")[(h(s) - h (0))- (h(t)- h(O))]ds 

Io' + e'A°)(h(t) - h(0))+ e'A")h(0)+ e(t,s)(h(s)- h(O))ds 

+ P(t,s)h(O)ds = [ r ( h ( t ) -  h(0))l + e"( ' )h(0)+ P(h(O)). 

As h E C'^a([O, T],E) by Lemma A.2(ii), we deduce by Lemmata A.3(ii) and 
A.l(ii) that z ~ C"~([0, T],E) if and only if t~e'A")h(O)~ C~([0, TI, E), i.e. 
(by [1, Proposition 3.4(iii)]) if and only if h (0)~ DA~o)(O-,~); in addition, if this is 
the case, then 

(A.16) I Iz ' l lc .~(o.T~.~)+lle( . )z( . ) l lc=,~o.~] .~)  <- - CIIh(O)llo~,o,(~.=), 

as is easily seen by (A.10), (A.11), (A.12) and by a revision of the proof of [1, 
Proposition 3.4(iii)]. Hence we conclude that u 'E  C"'([0, T],E) if and only if 
h(0)(~ Da(o)(o',oe), and in this case we also get, by (A.14), (A.15) and (A.16), 

I[ u' [[co,lo.rl.~)+ I[ A ( ' )u (')l[c',lo.rl.e, =< C2{[I A (0)x lie + IIf [[C~'Io.TI.E' + II h (0) llo~,o,,oA. 

The proof is complete since 

h(0)= A(O)x + f(O)-[ d A(t)-~ ],=o A(O)x. 
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REMARK A.8. Of course, Theorem A.7 has a generalized version which holds 

for the strict solution of the problem with initial time to E ]0, T[: 

u ' ( t ) -A ( t )u ( t )=[ ( t ) ,  tE[to, r], 

(A.17) u(to) = y. 

As a consequence we have: 

TI~EOREM A.9. Letx EDA<o~,fE C([O, T] ,E)A C'(]O, T],E), cr E ] 0 , r / ^ a ] ,  

and let u be the classical solution of (A.1). Then for each to E ]0, T[ we have 

A (to)u(to)+ [( to)-[d A (0 -1 ],=,oA (to)u(to)E D,4(o)(O',Oo). 

PROOF. For each toE]O,T[, u is a strict solution of (A.17) with y = U(to). 
Moreover u E Cl'~([to, T],E) by Theorem A.4. Hence the result follows by the 
generalized version of Theorem A.7. 
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