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ABSTRACT

We study existence, uniqueness and maximal regularity of the strict solution
u € C'(|0, T]. Ey of the integro-differential equation

u'(t)— A(t)u(r)—f, B(t.s)u(s)ds = f(1), +€[0.T)L

with the initial datum u(0) = x, in a Banach space E. {A(t)},¢j,, is a family of
generators of analytic semigroups whose domains D, ,, are not constant in f as
well as (possibly) not dense in E, whereas {B()},. -+ is a family of closed
linear operators with D, ,D D, VtE€]s, T]. We prove necessary and
sufficient conditions for existence of the strict solution and for Hélder continuity
of its derivative; well-posedness of the problem with respect to the Holder
norms is also shown.

0. Introduction

Let {A ()} iepor) and {B(1, s o=.<.s7 be two families of closed linear operators
on a Banach space E. In this paper we study the linear problem

u'(t)- A(t)u(t)-j B(t,s)u(s)ds = f(1), te[0,T]

©.1) 0
u(®y=x

where x € E and f:[0,T]— E is a continuous function. We suppose here that

for each t €[0,T], A(t) is the infinitesimal generator of a bounded analytic
semigroup {e**"},=,; the domains D, may change with f, and are not assumed
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to be dense in E, i.e. the semigroups e**"

need not be strongly continuous at
¢ =0. About the operators B(t,s) we require that for each s €[0, T[ and
t € ]s, T] the domain Dy, contains Da ), and in addition we assume for B(t,s)
some smoothness in t.

Integro-differential equations as in (0.1) have physical interest: for example,
they arise naturally in the study of heat flows in materials with memory. For
more specific physical models in which the linear theory of parabolic integro-
differential equations applies, see Coleman-Gurtin [9], Gurtin [21], Belleni
Morante [6], Miller [29] (and the references therein) and Heard [22, Section 6]
where a brief survey of the physical background is outlined.

There is a2 number of papers concerning problem (0.1) under different
assumptions: we will just mention here the papers considering the parabolic case
(i.e. when A (¢) generates an analytic semigroup). The first contribution is due to
Friedman-Shinbrot [18] (see also Friedman [17], [16]): they suppose Da(,y=
D4 (dense in E) and a Holder condition on t— A (t)A (0)™', which are the
classical assumptions of the theory of linear parabolic evolution equations in the
constant-domain case, whereas B(t,s) has the convolution form h'(t - s)A(s), h
being a scalar function belonging to the Sobolev space H*?(0, T) and such that
h(0)>0. They convert (0.1) into an equation of the form u'= T(u)+ F(u),
where F is “‘small”’, and solve it by a fixed-point argument. Thus the fundamen-
tal solution of (0.1), or resolvent operator, R(t,s) is found, and the solution of
(0.1) is given by the variation of parameters formula; an explicit representation
of R(t,s) as an integral along a suitable path of the complex plane is given in the
case A(t)= A by Laplace transform methods. Existence and uniqueness of
solutions of classical type (see Definition 1 below) are proved for any x € D _,y
(the domains of the u-fractional power of — A)and any Holder continuous f.

Several other papers concern the case A(t)=A and B(ts) of convolution
type. Miller ([28], particularly Section 8) studies (0.1) in [0, + [ by a method
introduced by himself [27] in the finite-dimensional case: he transforms (0.1) into
a problem z'(t) = Cz(t), z(0) = z, in a larger Banach space Z, with a suitable
operator C which is the infinitesimal generator of a strongly continuous
semigroup. He solves this problem by the Hille-Yosida theory and proves
existence and uniqueness of strict solutions (see Definition 1.4 below) for any
x € D, and f such that f'+ B(:)x is uniformly continuous and bounded in
[0, + »[. Well-posedness of (0.1) is also shown, i.e. the norm of the solution
|u(-)|e tends to O uniformly on compact subsets of [0, as [x|p, +
sup,=o f(t)||lz tends to 0.

Another method for the study of (0.1) in [0, when A(t)= A and B(t,s) =
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B(t - s) rests on the formal application of Laplace transform to the equation in
(0.1); the resolvent operator is then obtained by inverting the resulting equation,
and again the variation of parameters formula yields the solution of (0.1). This
approach is carried out by Grimmer-Pritchard [20]; in particular they assume
that the Laplace transform B(A) of B(t) exists and is analytic in a sector
{larg z | < /2 + 8} with § > 0: this leads to a resolvent operator which is analytic
in t. They find classical solutions whenever x € D _, for some p €]0,1] and f
is continuous with values in the same subspace.

More precise results can be found in Grimmer-Kappel [19]: they find the
resolvent operator as the integral of the series S7,[(A — A)'B(A)J' (A — A
along a suitable vertical line of the complex plane; classical (resp. strict) solutions
are found provided x € D4 (resp. x € D,) and f is either continuous with
values in D, 4« or Holder continuous with values in E. Their assumptions
require that | B(A)||<const-|A | for ReA >0, where B > 1, or alternatively
the same estimate in the larger sector {JargA | < /2 + 8} with any g8 > 0.

Sharp regularity results are proved in Da Prato-lannelli [13]: their assump-
tions are slightly stronger than those of [19], since they require that |B(A)| =
const-|A | for [argA|<w/2+8; accordingly, their results are also finer.
Indeed, by using the interpoiation spaces D4 (p,) (see Definition 1.7 below) in
place of D_,, they prove existence results of the strict solution u which are
analogous to those of [19], and in addition the maximal regularity property both
in space and in time is proved: namely, u' and Au have exactly the same
smoothness as f, where f is either continuous with values in E and bounded with
values in D, (u,) (space regularity), or u-Holder continuous with values in E
(time regularity); in each case x has to be chosen in Dx with Ax + f(0)€E
Da(p,®).

The general case of (0.1) (i.e. when A(t) is variable with dense and possibly
non-constant domains, and B(t,s) is not necessarily of convolution type) is
treated by Priiss [30] by a direct method. He takes for A(¢f) the same
assumptions as [18] in the constant-domain case, whereas in the case of variable
domains a set of assumptions introduced by Yagi [39], which guarantees the
solvability of the linear parabolic evolution equation, is taken: for B(fs), a
Holder condition with respect to (¢,s) is assumed. He converts the equation for
the resolvent operator of (0.1) into an integral equation in the space of bounded
linear operators E — E, and verifies (which is the main step) that the solution of
the latter equation is in fact the resolvent operator of (0.1). He finds classical
(resp. strict) solutions whenever f is Holder continuous and x € E (resp.
x € Daq), and shows in addition well-posedness with respect to the norm of E.
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In Tanabe [36] the case of non-constant, dense domains is studied; the
solvability of the linear parabolic evolution equation is assumed (this is
guaranteed by different types of hypotheses: see Kato-Tanabe [23], Tanabe [34],
Yagi [39], [40]). whereas B(t,s) has the same form as in [18]. His method
resembles that of [18], but enables him to find classical solutions for any x € E
and Holder continuous f.

All above papers consider the case of dense domains; on the other hand
Lunardi-Sinestrari [26] in a recent paper treat the non-autonomous, constant-
domain case, taking for A (1) the same hypotheses of [18] except for the density
of the domain. About B(t s) some regularity is assumed, which however in the
convolution case B(t, s) = B(t — s) reduces simply to require | B(- )€ L"(0, T)
for a suitable p > 1. The integral term is considered as a perturbation of the
linear parabolic autonomous evolution equation with fixed A = A (0); they use
the existence, uniqueness and maximal regularity results proved by Sinestrari
[31] for the latter equation, and find strict solutions of (0.1), without constructing
the resolvent operator, for any x € D, and p-Hélder continuous f satisfying in
addition the compatibility condition A (0)x + f(0) € Daw(i,>*). Moroever u' and
A()u(+) are u-Holder continuous too, and the problem is well-posed with
respect to the p-Holder norms.

In other papers, linear equations different from (0.1) are considered, in which
however generators of analytic semigroups play a crucial role: see, among
others, Carr-Hannsgen {7], [8], Da Prato-lannelli [12], Da Prato-lannelli-
Sinestrari [14]. Nonlinear versions of (0.1) are treated in Webb [37], [38],
Fitzgibbon [15], Tanabe [35], Heard [22], Sinestrari [32].

In this paper we study problem (0.1) by the same method used in [26}, i.e. we
treat the integral term as a perturbation of the linear non-autonomous parabolic
evolution equation

0.2) [ w(t)y- A(u()=f(r), 1€[0,T]

u(0)=x

in the variable-domain case. In particular, we do not make use of the fundamen-
tal solution of (0.2), using instead the regularity results and the representation
formula for the solutions of (0.2) proved in Acquistapace-Terreni [1]; by a
fixed-point argument we deduce existence, uniqueness and maximal regularity in
time for the strict solution of (0.1), in complete analogy with the results of [1] for
the strict solution of (0.2). Our hypotheses relative to A(t) are the same as
Kato-Tanabe [23], except for the density of domains, which is not assumed here;
about B(t,s) we essentially require a Holder condition for t— B(t,s)A(s)™' (not
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uniform with respect to s) and L’-integrability for s— B(t,s)A(s)”' with a
suitable p > 1. From this point of view, our assumptions are weaker than those
of (30], whereas the hypotheses in [30] about A (¢) are independent of ours (see
Remark 1.2 below). Moreover our results about strict solutions are stronger than
those in [30]; on the other hand we do not consider classical solutions here
(whereas this is done in [30]). This however could be done, again by a fixed point
technique, with just a slight strengthening of the assumptions about B(ts), in
order that the integral [, B(t,s)u(s)ds makes sense for a classical solution wu.
We describe now the subject of the next sections. In Section 1 we specify our
assumptions, state our definitions and prove some preliminary results. Section 2
contains our main theorems about existence, uniqueness and maximal time
regularity of strict solutions of (0.1), as well as their continuous dependence on
the data. In Section 3 we give two significant examples which are analyzed in
detail. Finally there is an appendix where some improvements are given of the
results of [1] relative to the linear parabolic non-autonomous Cauchy problem
(0.2), which had been used in the proofs of our main results in Section 2.

1. Notations, assumptions and preliminaries

Let Y be a Banach space and [a, b] a finite interval of the real line. We will use
the following Banach spaces of functions:
(a) for each p €[1,|

L?(a,b;y)={f:]a,b[— Y : f is Bochner measurable and [%| f(s)|%ds < =}
and
C([a,b],Y)={f:[a,b]— Y :f is continuous},

with norms

s =[ [ 1],

Fleqann= sup 176l
(b) for each 6 €]0,1]

C’((a,b}, Y)

- {re a1 V): fesgun = sup (LS s e 8] 5] <o)



262 P. ACQUISTAPACE AND B. TERRENI Isr. J. Math.

with norm
Ifllesgaors = flleqasrvr + [fleodasms
(©) C'(a,b],Y)={f € C(a,b],Y):f is strongly differentiable in [a,b] and
f € C(a,b], Y)}, with norm
“fllf'([a-hlAY) = ”f”F(laJ'LH + “f’ ”F((a«hl.n;

(d) for each 8 €10,1]

C"((a,b], Y)={f€ C'(a.b],Y):f € C°([a,b]. Y)}
with norm

I fllerqasiyy = [ lleqasier + 1 lcsgabrvy

We will also consider the function spaces

Clabl.Y)= () Ca+eblY)

e€l0b—a

and
C*(ja,b).Y)., C'(labl.Y), C*(ablY)

which are defined similarly.
If X,Y are Banach spaces, £(X,Y) (or Z(Y) if X =Y) will denote the
Banach space of bounded linear operators Q : X — Y, with norm

IO vy = sup {”QJL”'Y xeEX - {0}}-
[l flx

If A is a linear operator in a Banach space Y, we denote by D, its domain, by
o(A) and p(A) its spectrum and resolvent set; for A € p(A) we denote
(A—A)"' by R(A,A).

Let us list now our assumptions about the operators {A(f)}.cp.n and
{B(t, 5)}o=s<:=7. In what follows E is a fixed Banach space and T is a real positive
number.

HypotHesis 1. For each t€[0,T], A(t): DayC E—E is a closed linear
operator; in addition there exist 6, € |7 /2, 7] and M >0 such that

() p(A()DSs:={zEC:|argz|<6}U{0} Vi€[0,T);

@) [ROAOre STy YAESs ViEQ.T]
Thus in particular there exists {M,}.ex C |0, + [ such that

(i) |A ()" e e =M. /E" VE>0, VREN, ViE€[0,T].
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HyrotHesis II.  For each A € S,,, t— R(A, A (1)) belongs to C'([0, T]. 4(E))
and there exist L >0 and a € |0, 1 such that

L
[A]*+1

3
7 RAAW)

=

VAES,, Vie[0.T]

‘m:.)

Hypothesis II1.  There exist N >0, 5 €]0,1] such that

HyroTHESIS IV. For0=s<t=T, B(t,5):Dsu,C E—E is a closed linear
operator; in addition:

(i) DsusyD Day Vt€E]sTI;

(i) foreacht€]0,T])and x € E, B(t,-)A(+) 'x is Bochner measurable in E,
and there exist H >0, B €]0,1] such that

d%A(t)"' —EdS—A(s)" =N(t-s5) Vis€e[0,T].

S(F)

||B(:,s)A(s)-'||,(E,§(—t_—I:— for0ss<t=T

)e
or, alternatively,
|B(t, )A(-) "x [or-mon= H| x| VtE]O,T], Vx €EE;

(iii) there exists a measurable function ¢(7s) such that H,:=
sup.ep.ri fo @ (1,5)ds <o and

|B(t,s)A(s) "' — B(7,8)A(s) |eey= (1 = 1)’ (7,5) for0=s<r=t=T,
where B is the number appearing in (ii).

REMARK 1.1.  As usual, in Hypotheses I, II, III, IV the role of A(f) may be
played by A (¢)— wo, where w, is any positive number. Indeed, the substitution
v(t)= e “'u(t) leads to a problem like (0.1) with A(t), B(t,s), f(t) replaced
respectively by A (£) — wo, e "V B(t,s5), e“'f(t); hence the results of this paper
can be applied to v, and consequently to the original u.

REMARK 1.2.  Hypotheses I, II, III are classical (except for the lack of density
of domains) in the theory of parabolic evolution equations with variable domains
(see [23], [1]). Slight refinements are however possible in Hypothesis II: namely,
one can just require that t— R(A, A(t))x € C'([0, T}, E) for each x € E, with
the same estimate on ||[dR(A, A (£))/dt|¢w) In Acquistapace-Terreni [4] a
situation is considered in which Hypothesis II holds only in this weakened form
(and not in the form stated above).
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Hypothesis III can also be modified [39] and weakened [40], but for our
purposes such modifications are not useful since under the assumptions of [39],
[40] only the existence of a differentiable solution of (0.2) was proved, and not
Holder regularity of its derivative.

ReMark 1.3. Hypothesis IV is required in order to assure that
t— i B(t,s)v(s)ds is Holder continuous whenever A (-)v(+) is continuous (see
Lemmata 1.10 and 1.11 below); consequently, it can be replaced by any
(possibly) weaker statement for which that conclusion is still true.

In particular in the convolution case, e.g. B(ts)= Q(t—s)A(s) with
Q(c)E ¥(E) Yo €[0,T], Hypothesis IV requires a sort of local Hdolder
continuity of & = Q(a). Actually this assumption can be dropped altogether but
the proofs of our main theorems have to be changed and one obtains less general
results: see Remark 2.3 below.

Let us define now our solutions. Let x € E and f € C([0, T}, E).

DeriNITION 1.4, We say that u:[0,T]—>E is a strict solution of (0.1) if
u€ C(0,T),E),u(t)E Da,y V1 €[0,T] and A(-)u(-)€ C([0,T},E), and

u'({t)-Au(t)— Ll B(t,s)u(s)ds = f(t) ViE[0,T]), u()=x

DEFINITION 1.5.  We say that u : [0, T]— E is a classical solution of (0.1) if:

() u€C(0,T),E)N C'(J0,T},E). u(t)€ Dawy V1 €10, T) and A(-)u(-)€
Cl0,T),E):

(11) there exists

f B(t,s)u(s)ds: = li"lf’ B(t,s)u(s)ds VYte€]0,T];

(i) w'(t)— A(u(t)— J” B(t,s)u(s)ds =f(t) Vt€]0,T], u@)=nx.

REMARK 1.6.  We call “classical” the solution of Definition 1.5 because in the
classical semigroup theory when B(f,s)=0 the construction of the evolution
operator leads to this kind of solution. The name *strict solutions”, relative to
the functions of Definition 1.4, goes back to Da Prato—Grisvard (10] and has
been often adopted (see Da Prato~Grisvard [11], Acquistapace-Terreni [1], [2],
[3], Sinestrari [31], Lunardi [25]). However it should be noted that in [30] a
different terminology is used: our classical (resp. strict) solutions are denoted
strict (resp. strong) there.
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Let us recall now the definition of the intermediate spaces D, (6,%®) (6 €10,1])
between D, and E, where A is a closed linear operator in E, generating a
bounded analytic semigroup (possibly not strongly continuous at 0).

DeriniTION 1.7, We set for each 0 €10,1]
D4 (8,) = {x :slg}])t"’ le“x — x|l <= }
D.(8,<) is a Banach space with norm
Il =lxlle +sup e *fex = x

in addition, we have D C Da(6,0)C D4(8',0)C D, for 0<@'=9 <1 with
continuous inclusions. Equivalent definitions and further properties of these
spaces can be found in [11], [31].

We list now some basic results which will be needed in the following section.
First of all, set for any interval [a,b]C [0, T]

C((@.b). D acy) = {u € C([a,b],E): u(t)€ Dagy
VeE€[a.b],A()u(-)E C((la.b],E]};
as 0€ p(A (1) ¥1 €[0.T], C((a,b], Dac)) is a Banach space with norm
luleqaronm = 1A CuC)eqase

Next, we give a survey of the main properties of the strict solution of the linear
problem

(11) {u'(t)—A(t)u(t)=f(t), tE[t(),T]

u(t()) =X
with initial time ¢ € [0, T[. These properties in the case f, =0 are essentially

proved in [1], but for the general case only straightforward modifications are
required.

ProrosiTION 1.8.  Under Hypotheses I, II, I11 let x € D4, f € C*([to, T), E),
8 €10,m Aa); then a strict solution u(t) of (1.1) exists if and only if

. d - N
A(to)x + f(to)— [EAO) ] A(t)x € Day,).

=t
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In this case the strict solution is unique and is given by

(1.2) u(t)=e" W40 + J' e 0g(s)ds, tE€[n,T],

i

where g is the unique solution of the Volterra integral equation

13 8O+ [ PusEEs =0 Patx 1€l T
whose kernel P(t,s) is defined by

(1.4) P(t,S)=[:%e"“"] , 0=s<t=T
E=t—s

Moreover for each t, € |ty, T] and p € 0,n[ we have

1A )= A@x lequaer= G| LA @ e +1 e

)
where C, does not depend on t,,1,,p.
Finally we have u',A(:)u(-)€ C*(|to, T),E); in addition, u',A(-)u(:)€
C°([to, T),E) if and only if

(1.5)

+ “A (to)x + f(to) - [d%A(t)" ] A (to)x

=1,

d -
16 AW+ [EA0"| A@xEDuo),
=t
and if this is the case, then

u'llceqnriery A (Moo e = Cz{”A (t)x lle + 1l fllce .10

} .
D, ag8.x)

ProOF. For the case #, =0 see [1, Theorems 5.1 and 5.3] and Theorems A.S,
A.6 and A.7 in the Appendix below.

1.7)

+ ”A(to)x + f(t0) [%A (t)“] A (t)x

=ty

LemMA 1.9.  Under Hypotheses I, Il suppose that u is a strict solution of (1.1);
then we have

d N

PrROOF. Fix 1, € [ty, T]; by definition u(t;) € Da, and moreover, as t—t, we
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get

U ’t‘;‘ b A@)u(t)+f(t) inE
- hH
On the other hand

u(t)—u(t) _ A(t)‘ A(I'LA(t)u(t)JrA(t )_.A(t)u(t)—ALtn)u(tl)

t— 1 t—t

Vie ([t T]
which implies

“(’3-?(") Am" ?(IIXIA(t)u(t)EDA(,l) Vi€ [t T}

as t—1, we get

A(u(t)+ f(t)— [ At ] N (t,)u(t.)em.

Let us consider now the operators B(t,s) introduced in Hypothesis IV. First of
all we have:

LeEmMMA 1.10. Under Hypotheses I, IV we have:
ﬁ | B(t,s)A(s) ' [we)ds = Cs(t — 7)° ifosr=t=T
ProoF. Evident.
LEmMMA 1.11.  Under Hypotheses I, IV fix t,€[0, T[ and set
Sv(t)= f B(t,s)v(s)ds;

then for each tE€|t,T), S maps continuously C([to,t.],Dae,) into
{u € C*([ts, 1), E): u(t)) = 0}; in addition

" Sv IICB ({to.1).E) = C4ll “C([‘u‘ll Dagy
where C, does not depend on t, and t,.

ProoF. Let v € C([ty,t,],Day): then if tr< 7=t =1,
Sv(t)—Sv(r)= f‘ [B(t,s)A(s) ')A (s)v(s)ds
+ jT [B(t,s)A(s)"'~ B(7,5)A(s)"'|A(s)v(s)ds;
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hence by Lemma 1.10 and Hypothesis IV(iii)

” Sv(t) - Sv (T)"E = C3(t - T)B ” v “C([‘n-ln]vDA(v)) + (t - T)Bf d’(T’ S)dS “ v "C(['()JII‘DA(-))

= (C3 v HO)" % "C([‘O-‘l]vDA( ))(t - T)B'

In addition
[Sv(0)lle = J: [B(ts)A(s) " [leerdsl| 0 llcqumntpa

= Gl vllcqwanrpa(t = 1),

so that [Sv](%)=0 and the estimate follows.

2. Strict solutions

In this section we will show, by a fixed-point argument, existence and
uniqueness of the strict solution of (0.1); next, we will prove its maximal
regularity and well-posedness of the problem.

THEOREM 2.1.  Under Hypotheses I, II, III, IV, let x € Da, f € C°([0, T], E),
where 8 € ]0,1{; then a strict solution u of (0.1) exists if and only if the vectors x
and f(0) satisfy

2.1) AO)x +f(0)— [%A(r)"]FOA(O)x € Daoy;

if this is the case, the strict solution is unique, and there exists ¢cs> 0 such that

22 |[u'lleqorer A CuC)lcwone = ClA ©O)x e + I flcrqo.re-

ProoF. If a strict solution of (0.1) exists, then (2.1) follows by Lemma 1.9.
Suppose conversely that (2.1) holds: for each # € ]0, T] consider the affine
submanifold of the Banach space C([0, %], Da(,) defined by

C([0,t0], Dagy): = {u € C([0, 1], Day): u(0) = x};
then C.([0, %], Da(y) is a complete metric space with distance
d(u’ U) = ” u—v ”C((O“O]vDA(-)))'

By Lemma 1.11 the operator

v—[Sv](t)= Ll B(t,s)v(s)ds
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maps C.([0,%],Dacy) into {u € C?([0,4],E):u(0)=0}; hence for fixed
v € C.([0,1), Da(,) we can consider the problem

w'()— A)w(t)= Sv(t)+ f(¢t), t €10,1),
{ w(0)= x.

2.3)

Note that Sv + f € C?**([0,1,), E) and [Sv](0) = 0. Hence, by Proposition 1.8,
problem (2.3) has a unique strict solution w(t) which is given by

(2.4) w(t)=e*"x +f e M e(s)ds,  tE[0,1),
0
where g(t) solves the integral equation

(2.5) g(t)+ J;‘ P(t,s)g(s)ds = Sv(t)+ f(t)— P(t,0)x, t €10, ),

whose kernel P(t,s) is defined by (1.4).

We have thus defined a map I': v > I'(v), where, for each v € C,([0, ), Da(,),
[(v) = w is the strict solution of (2.3); hence I' maps C, ([0, to}, Da() into itself.
Moreover, by (2.4) we deduce

AWITEIO = A@Ox + [ AW lg(s)= g(0)ds + = Dg 1),

(2.6) t€[0,4],

with g defined in (2.5).

Let us prove that I' is a contraction in the complete metric space
C.([0, ), Da(,) provided ¢, is sufficiently small.

Fix vi,v, € G ([0, %], Da¢,y); then I'(v))—T'(v;) solves (2.3) with x =0, f=0,
v = v, — Uy, SO that by (2.6)

AOIE)O TN = [ @ 0Lp(5)= b(Dlds + €= D),

@7) t€[0,t],

where
4:(:)+L‘ P(t,s)¥(s)ds =[Sv. (1) —[Sv.}(t), t€E[0,1).

By Lemma 1.11 and Lemma A.2 in the Appendix below, we have in addition
g € C***"([0,1),E), ¢(0)=0 and
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& ficesernqo.er = Coll Svi = Sv2llceo.un ey
where C; does not depend on t,; therefore by (2.7) we deduce that

M,
Branrm

| A ()[T(0:)(1) = T(w) (D] |e = Cﬁ[ + M, + 1] gBran

Sv, — SUz”C"([O.:(.].E)

= Got8" " Sv. — Svalcs o e
Hence Lemma 1.11 yields
(2.8) IT(@) = T(w2)|cqoion, = CrCat ™| 0:= v2]lcosnnpacy-
Choose now

—1/(8rarBa(nl2)

n
then by (2.8) we get
”F(vl) - F(vz)“(‘([().z(,].DA(,)) = %“ [ ! “C([O"ll|~DA(<))’

so that the operator I': C, ([0, to], Da¢y)— C ([0, to], Da(,) has a unique fixed point
uo. This means that there exists a unique uy € C([0, o], Da,) N C'((0, %}, E) such
that

uo(t)— A(Du(t) = j B(t, s)uo(s)ds + f(t), t €[0,1),
(2.9) 0
uy(0) = x;
in addition by (1.5) and Lemma 1.11 we get, choosing p = 5/2,

|| A()uo(-)—A(0)x ”C([OJOI»E)

2 AaABA
=G {;tﬁ PPN A O)x fle + [ flles oo+ Clltollcqontoacy)

A

< 2_ng_.tgAMaA<n/2)[(1 + C4)||A 0)x "E + "f”c“([o.:o],l-:)

+

AQ)x + f(0)~ [%A(t)" ] A

+ Cl A uo(+) = AO)x Jlcqoul.e)

’
E

+ G "A(O)x +£(0)- [%A(r)"]_OA ©O)x

which implies, because of the choice of f,
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(2.10) 1A )uo(cworner =S CAlAQO)x |le + || flesqoirent-

Hence the desired strict solution of (0.1) is constructed up to ¢ = ¢,. In addition
we have by Lemma 1.9

'y d [
A (t())uo(t()) + j’ B(to,S)uo(S)dS + f(t()) - [EA (t)_l ] ~ A (to)uo(t()) c DA(‘”).
(2.11) T

Now we can start again: set x; = uo(f), t = (2to) A T, and define

[Sww](t)= J:’ B(t,s)v(s)ds, v € C([to, 1], Dacy)-

By Lemma 111, Slv c CB([t(),tll,E), [S]U](t())=0 and

(2.12) 1810 let qoiner = Cllvllcqnatoay Y0 € C({to, 1:], Dacy).

Consider the map I'y: C,([%, 1], Dacy)— C([to, 1], Day) defined by I'i(v)=w,
where w is the strict solution of

w(t)— A(w(t)= Swo(t)+ fO'" B(t,s)uo(s)ds + f(t), t € [to, 1],

W(ll())= X,.

By Proposition 1.8 it is clear that w exists, since it is easily seen that
t—[Si0](t)+ [ B(t,s)uo(s)ds + f(f) belongs to C**°([ts,t:],E) and since
(2.11) holds; moreover, as before we easily get that I', is a contraction in
C.([t0, 1], Day). Denote by u, its unique fixed point: then u, € C([t, 1.}, Dacy) N
C'([to,t,), E) and

ui(t)— A(u(t)= J;‘o B(t,s)uo(s)ds + ‘[l B(t,s)ui(s)ds + f(t),

(2.13) tE[to, 1],

u;(to)=x‘.

Hence by (1.5) and (2.12) we have for each p €10,7(

IAC)ud-) = A to)xillcqnrney

SraarBarp

@19 =S A+ lequnn | [ BC ks

A ([10.1).E)

+ C4|| u, "C(lt“.t.],DM.,)]

E

+C “A(to)uo(to)+ L * B(to, s)uo(s)ds + f(to) [%A(:)“]%A(to)uo(zo)
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On the other hand it is easy to verify that

” L B(-.s)uo(s)ds

" = C4“ u“”C([”v'()]vDA( y
CPfto.t].E)

so that, choosing p = n/2, (2.14) leads to
A u(-) = Ato)xillequane

2 ranrBr(n
é—‘%tg 221+ CH A (t)xi[le + | fllcrqpener+ Cdl A unl(+)

- A (to)xl ”C([‘(h'l]-E) + “ u‘)”C(IO-’OLDA( ))}

+C “ A (fo)ualte) + [ )"' B{(to,s)uo(s)ds + f(to) [%A )" L,(.A (fo)uo(to) N .

and finally, by (2.10) and recalling that (2/n)C,Cat5"***" " <3,
(2.15) 1A (i M = Clll A O)x le + (| flles oot
Clearly, by (2.9) and (2.13) it follows that the function
ul(t), t€[0,1)]
u(t)=
u;(t), te [t(),t1]

belongs to C([0,#], Dacy) N C'([0, 4], E) and solves (0.1) in [0,1]; in particular
by (2.10) and (2.15)

1A Hleqoner = Ciofll A O)x lle + 1 f lcsqonert

where Cio= Cyv C,, and by Lemma 1.9

! d o
A(t,)u(t,)+j0 B(t,s)u(s)ds + f(t,)— [EA(I)_] ],=, A (t)u(t) € Dag,

so that we can start again. In a finite number of steps we obtain the solution in
the whole interval [0, T] and (2.2) also follows.

Let us study now the regularity properties of the strict solution of (0.1).

TrHeOREM 2.2. Under Hypotheses I, I1, I, IV, let x € Daq, f € C°([0, T), E),
8 €10,a A m A B], and suppose that
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d —_
A0)x +f(0)— [EAU)_I ]‘=0A(O)x € Daw.

Then the strict solution u of (0.1) is such that w' ., A(-)u(-)€ C°(J0, T,E). In
addition u',A(-)u(-)€ C°((0, T],E) if and only if

(2.16) A@O)x +f0)— [dit A (t)"]':oA (0)x € Daw(8,),

and if this is the case, then

' lcsgo.rrer + I A () )lesqorrer = Cu {”A(O)x lle + 11 £ llcsqo.rr.er
2.17) |

+ ”A(O)x +£(0)— [diA(:)"] A(0)x ]
t =0 D @y8x)
ProoF. We know that u € C([0, T], Da(,); hence in particular Lemma 1.11
yields t— Su(t)= [ B(t,s)u(s)ds € C°([0,T),E) and [Su](©)=0. Thus u
satisfies

{u'(t)* A(u(t)=g@), t€[0,T]
u(0) = x

where we have set g = Su + f. Note that g € C°([0, T], E) and g(0) = f(0), so
that

d -
AO)x +g(0)- [EA(t)“]MA(O)x € Dagy.

All conclusions then follow by Proposition 1.8.

REMARK 2.3. In the convolution case described in Remark 1.3, we can drop
Hypothesis IV (iii), but the results are less precise. Namely, under Hypotheses I,
I1, III and IV(i)-(ii), it can be shown that if x € D¢ and f € C°([0,T],E),
where 8 € JU,n A a], then a unique strict solution u of (0.1) exists if and only if
(2.16) holds, and in this case u’,A(-)u(-)€ C°([0,T),E) and (2.17) is true.
Hence to get a strict solution a little more regularity on the data x,f is needed.
The proof also has to be changed: one has essentially to apply the contraction
principle in the space C®([0, T],Day) (whose definition is clear) instead of
C([0,T], Dagy); for the details see [26], where this method is employed in the
constant-domain case.
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3. Examples

Consider the problem

w(t,x)= a(t,x)ua(tx)— bt x)u(t,x)— c(t,x)u(t,x)

- Ll [ (5. x Yunc (5, x) + q (8,5, X )t (5, x) + r (8,5, x)u(s, x )] ds

(31) 9 :f(t’x)’ (t,x)E[O. T]X[O,l],

ao(H)ult,0)— Bo(t)u (£,0) = a(t)u(t, 1)+ Bi(u.(1,1)=0, t€[0,T);
L u0,x)=¢(x),  x€[0.1],

with prescribed data f, ¢, under the following assumptions:

a,b,c € C(0, T)x [0,1},R),

a(-,x),b(-,x),c(-.x)€ C*"([0,T],R)
32) A
with norms independent of x € [0, 1], for some 5 €0, 1{,

a>0,c=0inf0, T}x[0,1];

@0, Bor a1, 81 € C ([0, T], [0, +[) (1 defined in (3.2)),
(3 3) a()+BO>O, a|+B|>O in [0, T],

1
a(,+a,+f le(-,y)|ldy>0  in[0,T);
1]

(3.4) p.q,r:{(ts):0=s <t = T}—>C are measurable functions;
p(ts,)q(ts ), r(ts,-) € C*(0,1],C)
and there exist H >0, 8 € ]0, 1[ such that
lp(6s, )| +]q(t s, x) [ +|r(ts,x)| = H/(t - s)'™*
Vi€)0,T], Vs€[0,¢], Vx€JO0,1],

(3.9) )
or, alternatively

f [ sup | p(t,s,x)|+ sup |q(t,s,x)|
0 x€[0,1] x€[0.1)

1/(1-8)
+ sup lr(t,s,x)|] ds=H V:t€|0,T];
x€[0,1}
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p(-,5x),q(-s,x),r(-s,x) € C*(Js, T]) (B asin (3.5)),

and there exists a measurable non-negative function ¢ (7, s)

such that Hy= sup | ¢(r,s)ds <® and

rejp.T] Jo
GB6) 1
sup |p(t,5,x)=p(r,5,x)|+ sup |q(t,5,x)— q(r,5,x)|
x€[0.1) x€(0.1)

+ Sl[lp,l r(t,s,x)~r(r,5,x)| Slt—1[fp(1,5)

Vs €[0,T[, Vt7€]sT).

In order to apply the results of Section 2, we set

E = C([O»ll)v ”u ”E =

x

sup |u(x)|=:[uls,
€lo.1]

and define for each t €]0,T] and s €[0,1]:

Dawy={u € C*([0,1]): ao(t)u(0) — Bo(t)u'(0) = a:(t)u(1) + Bi(t)u'(1) = O},
3.7) [A®u](x)=a(t,x)u"(x)+ bt x)u'(x)+ c(t,x)u(x),

(3.8 { D5y ={u € C((0,1]): p(t,5,- Ju"+q(t;s, Ju'+r(t,s,- Ju € C([0, 1]},
. [B(t,s)u](x)=p(t,s,x)u"(x)+qt,s,x)u'(x)+ r(t,s, x)u(x).

We will verify now that the operators {A (t)} and {B(¢,s)} defined in (3.7) and
(3.8) satisfy Hypotheses I, II, III and IV of Section 1.

To begin with, in order to verify the assumptions for {A (¢)}, let us prove the
following a priori estimate:

ProPOSITION 3.1.  Let a,b,c,ay, a1, Bo, B1 be as in (3.1), (3.2), and suppose that
u € C*([0,1)) is a solution of

Au—a(t,u"—b(t,u'—c(t,)u=feC(0,1)]),
(3.9) ao(t)u{0) — Bo(t)u'(0) = 2z, €C,
a(Hu(l)+ Bi()u'(l)=z, €C,
where t € [0, T] is fixed and A is a complex number lying in the sector

(3.10) 2x={z€C:Rezz0U{z €C:|Imz|>K|Rez|]} (K>0).
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Then there exists M > 0, depending on K, a, b, c, &, Bo, 1, B, but independent of t,
such that

(14 A lle + [0 +1A %) wlle +lulle = MU flle + [0+ ]A T 20l + | 21

(3.11)
where
1 ifp:= min [Bo(t) A Bi(1)])>0,
(3.12) o
1 ifu=0
PrOOF. The function u solves the equation
(3.13) —@ Y +[A—c(t )y )u=fy(,)  in[0,1],
where
_ !t X)
(3.14) se0=ew( ], o0 N o=
Set
p= n}ln Y(tx);, m= nﬂna(t,x);
(3.15) 6= min{m}n(ao(t)+ ai(t)+ Ll Ic(t,y)|dy),

min (ao(t)+ Bo(t)), min (a:(r) + Bl(t))}.

In order to prove (3.11) suppose first that
(316) AEEKO{ZEC:IZ|§£0}

with &, to be fixed later. Multiplying both members of (3.13) by i and integrating
over [0,1], we get

S (- 09w @RE+ [ wluPds+ [ lelylufar

(3.17) 1 1
=J fyﬁdx—)«f ylufdx;
0 0

on the other hand, due to the endpoint conditions in (3.9), we can write for
i=0,1
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¥ (1) (,)lu'(')l“r( D)= (t)

(_ 1)‘w(t,1)u'(z)74(—¢) = J ]fB (t)é ai(t),

q//(t,i);—:g—;l u(i)f - w(t,i)W)B,%) if4:(1)> ault).
Hence if we set
BWwip it gy =)

(3.18) pitu):=
2y i Bi(1)> aule),

lwiHEL it )= ato)
319  Qu):=

@ HEL it g (1)> autr),
by (3.17) and (3.15) we easily obtain

P;Pi(t,u)+ fol ¢1|u’|2dx +J;)l Icl‘ylu lzdx
(3.20) .
<1o13 Q)+ Ll + egule)

Now observe that for i =0,1

i%" Wl if B(6)= i),
Qi(tu)=|

{a%"“ I if Bi(t)> ai(r),

so that, in any case,
G21) > 0w =2zl + 2D+ ']l

Next, by Landau’s inequality:

"l = 20 w2,
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and by the equation in (3.9) we derive

I 1 "
lu”ll. = —[(eo+llc)ulhe + 2006 [l e[ |7 11 £ ]
m

Hence we easily check

" 2
(3.22) lu'll. = Collulle + [ fIl-,
1 < i
(3.23) |u'lle = (Coo+ Dl + 211 f
where

2
= entllch+ZI5E;

finally by (3.20) and (3.21) we have

i 1 1

p3 ot [ wlwkas+ [ lelylubds

i= 0 0

(3.24)
o 4 |-
< e lepu e+ cull i+ 2o+ 2l + A gy + 2l

where

Co=max{ L2k 21y )}
On the other hand for each x,y € [0,1] we have
(3.25) Jue)F S 2u)F+2 [ |ws)Fds.

Now three cases can occur:

@) folc(ty)ldy = 8/3,

(b) there exists i €{0,1} such that «;(¢)2 /3 and B:(t)> ai(t),

(c) there exists i €{0,1} such that a:(¢)=8/3 and Bi(f) = ai(1).
In case (a), multiplying (3.25) by |¢(t, y)| and integrating over [0,1] with respect
to y, (3.25) yields

olall [ 2 (',
=8l [repyupas+2 [ olupax;

in case (b), choosing y =i in (3.25) and recalling (3.18) we get
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ule= S8 batuw+s |

in case (c) we note that

[u(t)|2<2|u(l)|2[ B(1) ] +2—I%Wf2p.(t,u)+%|z,«|2,

and hence, choosing again. y =i in (3.25), we obtain
1
||u||i§4p,«(t,u)+%]z,~ |2+%f ¥ lu'[dx.
0

Thus in any case we have

1 1 1
626)  [ule=Cu{p3atu)+ [ wluFdc+ [ 1etylubas + 0z +12.1F]
where

all 4 36}
Co=max A2k Spp 1 Sy

p'e
By (3.26) and (3.24) we get

lulp = CoedLlyule + cucullfl+ 1zl + |2 lllul.
N |-
+ (v B 17+ 20 12

(3.27)

Choose now

Eo =

__m__.

2Clw .’

then by (3.27), (3.22) and (3.23) we easily conclude that
(3.28) ke + " o + J["le = Cuefll f e+ [ 20l + [ 21}

with

1/2
Cm=2(clz+1)(clsc.3+[ ﬁdﬁ(&wM)] )+i.

om m

This proves the result provided (3.16) holds, i.e. when |A | = . Suppose now
A €3« and |A | = g,. The following argument is a slight modification of that in
Acquistapace-Terreni [2, Section 8]. Let x, be a point of maximum for |u | in
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[0,1]; take p =]A]7">A 1 and let o >1 be fixed later. Consider a function
6 € C”(R.R) such that

2
(c—Dp"

Multiply (3.13) by @6* and integrate over [0,1]. By estimating separately the real
and imaginary parts, one easily gets (since ab = ea’/2+ b’/(2¢) Ve >0)

0=0=1, 0=1linL:=[xo—pxo+p], 8=O0outside I, |8']|=

Re)\f y j iclylul’0’dx +3 j lu'f’0%dx +p2p,(t u)o(iy
(3.29)

= Sl + 20p Bl 10 3 0w

|Im A IJ ylulfodx <sf glu'[67dx

(3.30) 4o

2
iy 1)2p||¢"°°””” +20PM||f||m el + [l ol 2 Q.(tu) Ye>0,
with p;(t,u), Q.(t,u) given by (3.18), (3.19).
Assume ReA =0; then |[ReA|< K™'|ImA |, so that, choosing in (3.30) ¢ =
K /4, by (3.29) and (3.30) we easily get

(' .
3 lwredx = co T+ Cooplf I ul

(3.31) l
+C.920i(z,u) if ReA =0
where
. 1 1
Co=tlul(1+), co=2Lel(14%), comlui(1+5):

On the other hand, if Re A >0 we can use (3.29), thus obtaining in any case
1 1
(3.32) L Ylu'f0dx = 4C”(7'—:L1%" ulf+4Cis0p || f el u |l + 4C,9; Qi(t,u).
By (3.32) and (3.30) we have easily
1
[Im A [f ylul'0dx
V]

(3.33) . ,
= Corg—py,p U lE+ Cuonllf bl + Ca 2y Qult,w),
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where
Cxn=KCy; + ”‘~I’ ||°°~ G, =KCy +2JJ-("%”:’ C=KCiy ” ¥ ”x

Finally, by summation of (3.29) and (3.33) (if Re A > 0) or of (3.32) and (3.33) (if
Re A =0) we check, setting B, : = I, N [0,1] and recalling that p > Z |A | Z g4p

L[ ylwldes+ [ ylwrar
p Js, B,
(3.34)

o 1
= Cagz o lult+ Cuoplfllul+ o, Qo)

where

Cu— max{16“¢|| +C() 4C+ (1+%)Cm]

C =—‘max{4u_|'|_+ C3|,4C(x+ <1 +—)C }

o

x| —

Co= Elmax{2||¢|lx+ Ci, 4C1o + (1 +%) cn]

On the other hand, as in (3.25) we have for each y € B,

ulk = lu(xo)l =

+2[ [u'(t)fde | xo—yl,
BP
so that integration over B, with respect to y yields
0 _ 2 1
639 ulsllalkvilp| s, viuForax+ [ ylupoiax|
p P s, B,
By (3.35) and (3.34) we get
2
lulE=2flakv1)-| Coir Ly

(3.36)
Choose now

Il + Con S, 0.00) |

then

1

_("a"mV1)CZ3 1) 27

so that (3.36) implies
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63 luk=tllaky ] Cuop'lfklul+ G, 00w

Now by (3.19) se deduce instead of (3.21), due to the endpoint conditions
satisfied by u,

Lzl + 2 Dlull

(3.38) > Qtu)= |

%(f Zu'+ ‘21')(”14 “m+ "u'"“)

where w = min, [Bs(¢) A Bi(1)].
On the other hand, by Landau’s inequality and by the equation in (3.9) we
easily find

(3.39) fu"ll.=
(3.40) [u'll-= Cor| A [lu |l + Cosf A £ s
where

, 2
C26=£|:1+”£I_I_§+2”_b_lkj|, C’7—2C”2+1v Coun=—
m Eo Eom

Let us go back to (3.37). If u >0 by (3.37) and (3.38) it follows that

C
el = 70e b+ 1A 1 2ol + |20 DU 1,

where
Co=2lalv )] (Cuo)v 2],
which implies
(3.41) A Mule= Collfle+ 1A 20l +]2:D] i > 05
otherwise if u =0 by (3.37), (3.38) and (3.40) we derive that

e = S+ A ol + 2Dl (R0 20+ 21

where

8 CZS C28

4 2( 1
Co= E[”a v 1] [(Czw)v (Czsg(e_(l)/z"' sz))], Co=[lal.v1] pdeo

b
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and hence
342) (A lull-=(Cot COf+|A[( 2ol +12:)] i =0.

By (3.41), (3.42), (3.40) and (3.39) we get in any case when |A|Z= g,
3.43) A ful+ A+ u = Callfll 1A C

zol+|z:)]
where v is defined by (3.12) and
Co(1+ Cr+ Ci)+2C, if u >0,
Cp=

(Cao+ CY)(1+ Coy+ Co) +2Cs if p =0.
By (3.43) and (3.28) the result follows with
(3.44) M = Cis+ Cs,.
As a consequence of the above proposition, we have:

PROPOSITION 3.2.  Let a, b, c, ao, a1, Bo, B:1 be as in (3.1),(3.2); let {A (¢)}iepo.ry be
defined by (3.7). Then we have:

(i) o(A@)C]-,0[ Ve€[0,T];

(i) for each K>0 there exists M(K)>0 (depending also on
a, b, c, a0, a1, Bo, B1) such that

< MEK)
T1+|A|

@iii)) RAA())E C'"([0, T),%(E)) if A€ ]—,0[, and for each K >0 there
exists L{K)> 0 (depending also on a,b,c,ao, a1, Bo, B1) such that

)gﬁ%_—, VAES, VtE[0,T],

where 3.« and v are defined in (3.10) , (3.12).

(3.45) IR, A(®))l|ec) VA EZ YiE[0,TI;

[ 2r0A0)|

Z(E

PrOOF. (i)~(ii) Fix ¢ € {0, T]; let us first prove that 0 € p(A (¢)). By Proposi-
tion 3.1 we get that 0 is not an eigenvalue of A(¢). Let u;, u, be the (unique)
solutions of

{ a(t, Jus+ b(t, Yuo+c(t," Juo=0, {a(t,-)u’,’+ b(t, Y)ui+c(t,-)u, =0,
uo(0) = Bolt), us(0)= ao(t), w(1)=pi(t), ui(l)= —a(1).

As both u, and u, solve (3.13) with A =0, f=0, it is readily seen by
differentiation that
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W, W uou, — uiug) =const =: Q(t)

(¢ is defined in (3.14)), and the constant Q(t) cannot be zero, for otherwise we
would get uo, u, € D a¢y and A (t)uo = A (t)u, =0, which is impossible since 0 is
not an eigenvalue of A(t). Hence it is easy to verify that for each f € E the
function

u() = =g 1) [ w0 EEDdy + o) [ )1 2y

is a solution of (3.9) with A =0, zo=z,=0. Thus by Proposition 3.1 we have
0€p(A(1)). Recalling now that A €Ep(A(t)) provided AEp(A(t)) and
|[A = Ao| <|R(Ao, A(t))llze), by a standard argument we deduce that %k C
p(A (1)) and (3.45) holds for each A € 3« with a suitable constant M(K). This
proves (i) and (ii).

(iii) Set for each t €[0,T] and g € C*([0,1]) (here D denotes the derivative
with respect to x):

A(t-D)g=a(t)g"+b(t-)g'+c(h)g

I'(t,D)g = (ao(t)g(0) — Bo(t)g'(0), a:(t)g (1) + Bi(1)g'(1)),
and, for fixed A €3k, f €E,

u(t-)= ROLAW), o(ts-)=4E)=86)  ocoT), 1#s

t—s

The functions u(t,-)— u(r,+) and v(t,s,-)— v(t,0,") solve respectively

046) { [A =A@, D)[u(t,)-u(r,-)]=[A(t-,D)— A(7,- D)]u(r,"),
' I(t,D)[u(t,")— u(r, )] = = [[(t, D)~ T(r,D)]u(z,");
F [)\—A(t,',D)][U(t,S,')—U(t,O’,')]
=A(t’.’Dz:f(s’.’DJ[u(s,')-u(a,')]
A(t,-,D)—A(s-,D) A(t,:,D)—A(o,",D) _
G4T) [ Py — o ]u(m ),

L, D)o (5, ) - v(t,0,)) = - FEPIZLELpy (o y6,)

t—s

t—s t—

[F(:D) I(s,D) F(tDLF(oD)]u( 3
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As the coefficients of A(t,-,D) and I'(¢, D) are differentiable in ¢, by (3.46) and
Proposition 3.1 we check (denoting by D the derivative with respect to x):

[T+ 1A u(e) = u(m )
+{1+ A"} Du(t,-) = Du(r, )+ | D*u(t-) = Du(r, ).
")

= M-t = 1 {Callu(r,")lcrqoap + Crall + A [ (7, Werqonnt

S MH(Cav C)lt =7 [L+]A]T ] f e,

where v is defined in (3.12), M is given by (3.44) and

Cu= max{ sup Jla (-, x)llcgory, sup [|6(-, x)lcrqorp, sup ||C(',x)"6‘uo,n)},
x€l0.1] x€[0.1) x€{0.1})

Cu= max{” 00”6’([011» ” a, ”C’(IO-TI» ” BOHC'([O.TD- || B ”C‘(lovrl)}-

Similarly by (3.47), using (3.48) we get

[L+]A{llo(ts, ) - v(t o)+ [1+]A ] Do(ss, ) - Do(t,0,)|-
+|D%u(t,s,- )~ D*v(t, 0, )
=M {[Cullu(s,)— u(a, e+ Csls — o [ u(o,*)czqon)
(349) +[1+ A [Culluts, ) = u(o, eram+ Cxs|s = a [ u(a, -}
= Cols—a|"(L+ APl
where

Cis = max{ sup "a("x)||0'~"(lo.rl>’ sup ||b('ax)||6'-"<[n.n), sup "C(‘,X)uc‘-"qo,n)],
x€[0,1) x€(0,1] x€[0.,1)

Cs = max {]| aollcrngo.rn, || @i llctago.rn, | Bolletao.rns | Br fetago.rnts
Cy= 2M2{M(C33 A C34)(C33 + C.u) + Cis+ Cza}-

By (3.49) we deduce that there exists
; 4 =2
W(t,')—-lsl_rg v(t,s,-)—dtu(t, )—&R(A,A(:))f
in the C*-norm and by (3.48) we check as 7—¢
[L+]A W)+ [1+]AZIIDw ()l + [ D*w (2, )l

0 galli®

= MZ(C33V Cu)[l + IA
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which implies in particular

L(K

(.51) e ETEATE

Wlth L(K) = 2M2(C33 \% C34).
To conclude the proof of (iii) we have to show that

t—>5‘9;R (LA (1) E C([0, T], Z(E)).

Now observe that by (3.46) it follows that w(t,-) is the solution of
(A =A@ D)w(t)= At ,D)u(s-),

(3.52) {F(t,D)w(t,~ )= —T(t,D)u(t,),
whereas w(t,-)— w(r,-) solves

A=A D)w(t, )= w(r )= A, D)u(t )= u(r))
+[A(t,-,D)- A(r,",D)lu(r,-)+[A(4,",D)— A(r,-, D)]w(r,"),

L, D)w(t-)—w(r, )] = ~T(t-,D)[u(t-)~ u(r,)]

| -[¢-, D)= T(r-, DYu(r, )= [[(4-, D)= T(z,+, D)|w(r,");
in (3.52) and (3.53) we have set for g € C¥([0,1])

(3.53)

; da .. Ob , ., dc
A, D)g =2(t)g"+ 5 (4-)g" +5,(86°)8,

dal

(D) = (42050~ Le)g 0 22 g 1)+ L g1,

By (3.53), Proposition 3.1, (3.48) and (3.50) we readily obtain

[T+ [AMw(s)=w(z )l
(3.54) +[1+]|A"’]IDw(t,-)— Dw(r,")|-+||D*w(t,-)— D*w(z,")|-
Z Nl

éC}g““TIn(l"")\

where
= M2(4M(C33 \ C34)(C33 + C34) + C35 + 2C36);

this in particular yields the result.
By Proposition 3.2 we see that the operators {A (#)}cpo.r) defined in (3.7)
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actually satisfy Hypotheses I, II (with @ =1/2 if u =0, and any « €]0,1] if
p >0) and III. On the other hand it is easy to see, by (3.5), (3.6) and (3.11), that
the operators {A (¢)}.cio.r; and {B(#, s )}oss<.=r defined in (3.7) and (3.8) also fulfil
Hypothesis IV.

In order to apply the results of Section 2 to problem (3.1), we need to
characterize the spaces Daqy and Dae(6,%), 6 €10,1[.

It is easy to see that for each t €[0, T]

c(o,1]) if Bo(t) A Bi(t)> 0,
{u € C([0,1]): u(i)=0} if Bi(t) =0< B;(1),

{i7j}={0’1}7
{ue C0,1]):u0)=u(1)=0} if Bo(t)=Bi(t)=0.

On the other hand it is known that if 8 €]0,1/2]
(3.56)

(355) Dawy=

Daw(8,%) = CZG([O, 1) N Dag,
whereas if § € |3, 1]

Daw(6,)
(G5 ={u€ C*7'([0,1]): ao(t)u(0) — Bo(t)u'(0) = ar(t)u (1) + Bi(t)u’(1) = O};

finally in the special case § =; one obtains

{u e C*'([0,1]): sup M<w,i =0,1}

retoaim X ]
if Ba(t)nBi(t)>0,
{uEC*"([O,l]):u(i)=O, su Mm}

(3.58) DA(:)(%, w) = 4 xe[().l]])—(i) 'x _]I

if B:(1)=0<p;(t).{i,j}=1{0,1},
{u e CH'([0,1]): u(0) = u(1)=0}

if Bo(t)=Bi(1) =0,
where C*'([0,1]) is the “Zygmund class” of functions, defined by
cH'(0.1p=

{u € C([O,l]):suplu(x)+ u()il—_Zyul((x + Y)/Z)[:x,y €[0,1],x#y <oo].
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In the case Bo(t) = Bi(t) = 0, the characterizations (3.56), (3.57) are proved in Da
Prato-Grisvard [11] and Lunardi [24], where also a proof of (3.58) can be found;
when Bo(t) A B:(t)> 0 the proof of (3.56) and (3.57) 1s in Acquistapace-Terrent
[3, Section 6]. whereas (3.58) is proved in Acquistapace-Terreni [5]. The
remaining cases (B;(¢) = 0< B;(¢), {i,j} = {0,1}) have not been proved explicitly:
however the proof follows in a standard way by employing the procedure of [5]
relative to the case 6 =3 in the one-dimensional setting described in [3, Section
6].
Let us go back now to (3.1). Assume that

{fe C([0,T}x[0,1]) and sup |f(t,x)—f(s,x)|=[flo]t~s|"
(3'59) xe(0.]
Vs €[0,T)] (o0 €]0,m48));

660 { ¥ € CY([0,1]) and
a()Y(0)— Bo(0)¢’'(0) = a:(0)g (1) + B1(0)¢'(1) = 0.

By Theorem 2.1, a unique strict solution of (3.1) exists if and only if condition
(2.1) holds; in addition, by Theorem 2.2, such a solution belongs to
C"?({0,T},E)N C*([0,T],Da), 8 €]0,0], if and only if condition (2.16) holds.
Thus we have only to write down the concrete meaning of conditions (2.1) and
(2.16) in the present situation.

Set

w= [%A(r)" L“A(O)w.
Then w is in C*([0,1]) and solves
(a0, x)w"(x)+ b0, x)w'(x)+ c(0,x)w(x)
=220, 1)p"()+ 2200, ) (1) + 50, )(x), 5 €[0,1],
20w (0)~ BuO)w'(0) = — @X0)(0)+ B0 O),
[ 1@ (1) + BiOw(1) = — @l O)(1) - BIOW'(1).

Consequently it is easy to see that condition (2.1) is automatically true if
Bo(0) A B:(0)> 0, otherwise it becomes respectively:

3.61) )

£0.0)+ a0+ [ 50,0~ B4 | @) =0

(3.62) if Bo(0) = 0 < B:(0),
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f0.0+a@ vwr )+ [ 0.1+ E [y =0
it 8u(0)> 0= Bi(0);

finally if B4(0)= B,(0)=0 then (2.1) is equivalent to both (3.62) and (3.63).
The meaning of condition (2.16) is a little more involved: set

(3.64)  g=f0,)+AQOW =f(0,))+a(0, )"+ b0, )"+ (0, )¢;

then we have

(3.63)

AOW+0.)-[Eaw|_Aow=g-w

§=

where w is the solution of (3.61). As w € C*([0,1]), g — w belongs to C°([0,1]),
C*'({0,1]), C"°([0,1]) as soon as g does; hence it is easy to see that condition
(2.16) is equivalent to:

(8 € C*([0,1]) if Bo(0)A B:(0)>0,

g € C?*([0,1]) and (3.62) holds if Ba(0) = 0 < B,(0),

(365 Y g€ ¢*((0.1]) and (3.63) holds if Bo(0)> 0 = B,(0),
| € C*([0,1]) and both (3.62) and (3.63) hold _ if Bu(0) = B:(0) =0,

if 6 €1]0,1/2[;

xel01] x€[0.1{

if Bo(0) A B1(0)>0,
sup F{t R {0] < o and (3.62) holds

i x€[0.1] I-x
(3.66) g€ C*'([0,1)) and { if Bo(0) = 0 < B.:(0),

sup lg()—2O)] < o and (3.63) holds

x€10,1} X
if Bo(0)> 0 = B:(0),
| (3.62) and (3.63) hold if Bo(0) = B:(0) =0,

{ ao(0)g(0)— Bo(0)g'(0) + a(0)¢(0) — Ba(0)¢'(0) = 0,
a1(0)g(1) + B1(0)g' (1) + a0} (1) + Bi(0)y'(1) = 0,

if 5=15

geC"?7'([0,1])) and
(3.67)

if s €B1[
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Now we are ready to state the final result.

THEOREM 3.3.  Assume that (3.2), (3.3), (3.4), (3.5), (3.6) hold and let f(t,x),
Y (x) be functions satisfying (3.59), (3.60). Then:
() if Bo(0)a Bi(0)>0, problem (3.1) has a unique strict solution u €
C'([0, T)x[0,1]) such that u.. € C([0, T} x [0,1]);
(i) if Bo(0) =0 < B:(0) (resp. Bo(0)>0 = B1(0)) the conclusion of (i) is true if
and only if f and ¢ satisfy (3.62) (resp. (3.63));
(iii) if Bo(0) = B:(0) = 0 the conclusion of (i) is true if and only if f and ¢ satisfy
both (3.62) and (3.63);
(iv) if the strict solution u exists, then
C°(J0, T)) uniformly in x ifu>0
u(,x) ux(-,x)E {
C°""™(0, T)) uniformly in x ifu=0

where p = min,cp.71(Bo(t) A Bi(t));
(v) if the strict solution u exists, then

C? ([0, T)) uniformly in x fu>0
(-, x),ua(-,x)E

C*""([0, T)) uniformly in x

ifu=0
if and only if f and § are such that
[ (3.65) holds with § = o ifo €104
(3.66) holds ifo=}%

(3.67) holds with & = o (resp. (3.66) holds) if o €13,1[ and

L w >0 (resp. u =0),
where the function g, appearing in (3.65), (3.66) and (3.67), is defined by (3.64).

Second Example

Let Q CR" be a bounded connected open set, with boundary dQ of class C°.
Consider the differential operator

(3.68) A(tx,D)= Y a;(t,x)D.D, + D, bi(t,x)D, + c(t,x)],
ij=1 i=1

(t,x)E[0,T]x Q,

under the following assumptions:
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da; 3b; dc
at’aot’at
G697 a,Cox)biC,x)e( )€ C(0.T].C)
with bounds independentof x (7 €]0,1),

a;,bi,c € C([0, T]x Q,C); € C([0.T] x §,C),

(70) Re a(txE6ZNIEF  VEER', VIE[TIxO (N>0)

ij=1

Consider also the boundary differential operator

3.71) I(t,x, D)= 2 Bi(tx)D. +a(bx),  (Lx)E[0, T]x a0
where it is assumed that

[ B =(B1,...B8.)EC'([0,T]*x 3Q,R"), a € C'([0,T]* IQ,R),
Bt). L e car) (), 20 e ClonR)

> ot

(3.72) 5 with bounds independent of ¢,

B(-,x)€ C*"([0, T],R"),a(-,x)€ C*"((0, T],R)

L with bounds independent of x,

373)  a(tx)=0, zgf(z,x)m(x)zag V(,x)E[0, T]X 30 (80> 0)

where v(x)=(vi(x),...,v.(x)) is the exterior normal unit vector at x € 3.
Next, define for 0=s<t=T

(3.74) B(t,s,x,D)= zp;(t, s,x)D, +q(t,5,x), x€Q,
where we suppose that:

( Di»q are complex-valued functions, defined in
{(t,5,x):0=s<t=T,x € (_l}, measurable with respect
to (¢,5), continuously differentiable in x, and such that:
2 1ps0)l +las.0)| S =y

Yt €10,T], Vs €[0,¢], Vx €Q, or, alternatively,

(3.75) :

tr n 1/(1-B)
I [2suplp.-(t,s,x)|+suplq(t,s,x)l] ds=H
0 =1 xef} x€Efl

L Vt€[0,T) (H>0,8€10,1])
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and

Z sup Ipi(t,5,x)— pi(r,s,x)| +sup|q(t,5,x)— q(r,5,%)|
i=1 x€ xEN

(3.76) =(t-rfé(rs) V4relo,T], Vse0,r]

where B is the same as in (3.75) and ¢(r,s) is a function such that
Ho:sup.ep,r fod(r,s)ds <x. We want to apply the results of Section 2 to the
problem

u(t,")— A(t,-,D)u —L' B(t,s,",D)uds = f(t,") inQ; t€[0,T),
3.77) I'(t,,D)u=0 indQ; t€[0,T],
u0,-)=¢ in Q,
with prescribeii data f, ¢.
Set E = C(QQ), ||ulle = supcea|u(x)| = :| u|l-; define for each t € [0, T]

Dawy= {u € N H*(Q):A(-,D)ue C@),I(t ,D)u=0in an],

(3.78) 1sq<=
A()u=A(t",D)u;
Dsey={u € C{):B(1,s,-,D)u € C({Q)},
(3.79) B(t,s)u = B(t,s,",D)u.

In order to verify Hypotheses I, II, III and IV in the present case, we first
consider the operators {A (f)}.co.r)- We have

PROPOSITION 3.4. Suppose that (3.68), (3.69), (3.70), (3.71), (3.72) and (3.73)
hold, and let {A (t)}:cto.) be defined by (3.78). Then there exist v, K,M,L >0 such
that

() o(A()23k.:={A EC:ReAZw}U{r EC:|ImA|>K|Rer —w}
vie(0,T);

(i) [1+]2 - [lIRAA@E |

+1+1A - 012 ID.RA AW = M| fle
VfEEVAEZk., VIE[0,T];
(iii) for each A € 2. we have R(A,A(-))€ C""([0,T),4(E)) and

3 L
ER()\,A(t))“T(E)él_'_I)‘_wI VA E3k., VIE[O,T].
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Proor. This result is due to Stewart [33] in a very general situation; a
simplified proof for the present case can be found in Acquistapace-Terreni {1,
Section 6]. Thus Hypotheses, I, IT (with any a € ]0,1{) and III are fulfilled by the
operators {A (t)— @l}ep.r) (and not by {A(¢)lepn). On the other hand, by
(3.75), (3.76) and Proposition 3.4(ii) it is easily seen that the operators
{B(t,5)}oss<:ist and {A (t)— ol}.cqo.r) also satisfy Hypothesis IV.

Let us characterize the spaces Da), Daw(6 %) (6 € ]0,1[), obviously coincid-
ing with D aqy-ut, D a@-od8,%). In Acquistapace-Terreni 5] it is proved that
under the above assumptions

(C* () if 8 €103,
lu(x)— u(x — aB(x))| :

{u € C*"(ﬁ):sup{
(380) Da(6%)=1 x€d0a>0,x-0B(x)E< oo} it 9=1
{u € C7'(Q):

2t =3 B()Du=0in 20} 5 €10,

where the Zygmund class C*'(Q) is defined by

c*'{)= {u S C((—)):sup{lu(x)+ u(%—_Z;t,((x +Y)/%M:x,y,x;y€ﬁ}<w}.

This in particular shows that

(3.81) Daw=C({).
Now take the data f,¢ such that

(382)  fECQOTIxQ) and suplf(ex)~flsx)|=[fl1 -5l
Vi,s €[0,T] (o €]0,7 A B]),
(B8) W€ N H*@)AQ, . DWECA), TFO, D=0 indsQ.

Clearly, by (3.81), condition (2.1) is always true in the present situation. About
condition (2.16), set

(3.84) w= [Edt-A(t)" ]‘ZOA ©0)y, g=f0,)+A(,-,D)y,

so that
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AOW+10.)-[ 20| AOw=g-w

The function w solves

AQ,-,D)w =F: —2‘9—“1(0 )DD¢+2 20,09+ 20, )y i,

rO,Dyw=G:= - (0 W — 2 20.)Dg in a0,

and obviously F € ﬂ,§q<,L“(Q), G € Nz H™74(39). This clearly implies
wel . ,..H*@), and hence w €, .., C"" (). Consequently, g —w be-
longs to C°((), C*'(€), C"*() as soon as g does. Therefore we easily derive
that condition (2.16) is equivalent to:

(geC®)  ifs€]0i,

g€ C*'(@)and Sup{l_giﬁtgix_-ﬁ_ﬁim:

ag

(3.85) 1 XE39,0>0,x—0B(x)eﬁ}<oo if6=14,

g€ C:,za—l(ﬁ) and a(()’ -)g + 2 Bi(ov ' )Dx,g

(0 )¢+2 (0 )D,4=0 indQ,if s €B1],

Hence we can conclude with the following

THEOREM 3.5. Let A C R" be a bounded connected open set with boundary 3£}
of class C*. Assume that (3.68), (3.69), (3.70), (3.71), (3.72), (3.73), (3.74), (3.75)
and (3.76) hold, and let f(t,x), ¢(x) be functions satisfying (3.82), (3.83). Then:

(i) problem (3.1) has a unique strict solution u € C'([0,T] x Q) such that
u € C([0, T), H**(Q)) Vq €[1,%[, and A(-,- D)u € C([0, T] x Q);

(ii) the strict solution u satisfies in addition u € C°(]0, T], H**(Q)) Vq € [1,%[
and u,(-,x),A(,x,D)u € C°(]0, T}) uniformly in x;

(iii) the strict solution u satisfies u € C°([0,T),H**(Q)) Vq €[1,»[ and
u(-,x),A(:,x,D)u € C°([0, T)) uniformly in x, if and only if f and  are such
that (3.85) holds with & = o, where the function g, appearing in (3.85), is defined
in (3.84).

Appendix

We will use here the same notations as in Acquistapace-Terreni [1]. Under
Hypotheses I, 11, III consider the problem
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u'(t)y—Au(@)=f(1), t €10, T] (resp. t €0, T)),
(A1) [ 0=

where x €Da, f€C(0,T],E)NC°(J0,T|,E) (resp. x EDnw, fE
C°([0,T}),E)and A (0)x + f(0)—[(d/dt)A (t)'}-0A (0)x € D), and o €10, 1.
By [1, Theorems 4.1 and 5.1] a unique classical (resp. strict) solution u of (A.1)
exists and is given by

(A2) u(t)=e"““x +J e Ye(s)ds, t€][0,T],
0
where g is the unique solution of the integral equation

(A.3) g(t)+J;l P(t,s)g(s)ds = f(t)— P(1,0)x, t€|[0,7T)

with P(t,s) defined by (1.4).

In [1, Theorems 4.1, 5.1 and 5.3] it is shown that if ¢ €]0,7[N]0,a], then
u,A(\Ju(-)e C°(10,T},E) (resp. u',A()u(r)EC([0,T),E) provided
AO)x + fO)—[(d/d)A (t) ']i=0A (0)x € Daf0,®)). We want to prove here a
slight refinement of these results, namely that the same conclusions hold if
g€10,nral

In addition we will prove estimates (1.5) and (1.7) for A (-)u(-) and u’, which
were not explicitly stated in [1]. Let us begin with some refinements of the results
of [1, Section 3].

LEmMA A.1. Set Po(t)= [oP(t,s)d(s)ds, t €[0, T]. Under Hypotheses I, I,
HI we have:

() if 6 €L'O,T;E)N C*(|0, T),E). 8 €]0,1[, then P$ € C™*(|0, T}, E);

(i) if & € C*([0,T),E), 8 €]0,1[, then P$ € C™*([0, T}, E).

ProoF. (i) Let t > 7= ¢. We have

Po()- Po(r)= | P(13)b(s)ds
* [ f+ f ]2%, f e““"[%R(A,A(t))—a—a,R(A,A(r))]ws)— (r)]dAds

1

(Ad) +5~ f %[e"*‘“’* —e" ™ [%R(A,A(t))—%R()\,A(T))]d’(T)d)‘

+ [ L T f :2 ] f - L Ae® L R(A, A ()6 (s)drdeds;
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consequently (by [1, formula (1.3) and Lemma 3.1])
IP6 ()~ Po(r)lle = Clld llcqerret — 7)°
e leoerne @ lcene)i(t—7)" + (1 — 7))

+cll ¢ llesqerm. E)[/ [(tt__T)" t t_s)T = ](T - s)’ds

el @ leqenelt = + (=) (7 =y

+ C(E)"d’ "L 10.e2:6x(t — 7-)+ C"qS ”C((s/z TlE)J’ J': : f‘zi{
= c(e)l(t -7y + (1 -7y,
(ii) Let t > 7 =0. By (A.4) we get

1P8) = Po()e = b llermen] =7 + [ [ m - syas

(A.5) ”"")"*('“’)[ f)' ] ” . gfg" }
=l lesqonel(t—7)" + (t - T) )

LEMMA. A2. Sety = (1+ P)'¢, i.e. § + Py = ¢. Under Hypotheses I, II, 111
we have:

(i) f$EL'O,T;E)YNC*(|0,T),E), 6 €]0,1[, then ¢ € C**"**(]0, T}, E);

(i) if  €C°([0, T),E), 8 €]0,1], then ¢ € C**"**([0, T}, E).

Proor. (i) It follows by [1, Proposition 3.6(ii) and 3.5(iv)], Lemma A.1(i) and
the integral equation ¢ + Py = ¢.

It follows by {1, Proposition 3.6(i) and 3.5(v)], Lemma A.1(ii) and the integral
equation ¥ + Py = ¢.

LEMMA A.3. Set To(t)= foe""*“¢(s)ds. Under Hypotheses I, II, III we
have :

Q) if 6€L'O,T;E)NC(0,TLE), &6€]0,1, then Tp€E
C"*""*(J0, T}, E);

() if ¢€C°(0,TL,E), 6€]0,1[, and moreover ¢(0)=0, then
Té € C**([0, T], E).

PrOOF. (i) By (1, Proposition 3.7(iv)] we have T¢ € C'(J0, T],E) and for
each t €10, T]
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(A6) (T8)0)= [ AW O (s)=$(0lds +e* (1) + || P(15)(5)ds.

Let t > 1= ¢. As in the proof of [1, Proposition 3.7(vi)] we have

u L A()e" " P(s) - $(1))ds - L A(r)e ™"V (s)— d(r))ds

=c(e)t -1,

(A7)

E

(A8) le 0 (1)~ e Vb (r)lle = c(e)(t — 1),
whereas by Lemma A.1(i)

w9 [ Pesees- [ pesees

By (A.6), (A.7), (A.8) and (A.9) the result follows.

(i) By [1, Proposition 3.7(vii)], T¢ € C'([0, T), E) and (A.5) holds for each
t €[0,T); in particular (T¢)(0)=0. Now let t > 7 =0. As in the proof of [1,
Proposition 3.7(vii)], we get

< c(e)(t—7)""

[} A 186)- s@hds - [ A1)~ bl
= c|dllesqoniet = 7Y’

(A.11) le” ¢ (1)~ e d(1)]e = ¢l ¢ lcsqoreft = 7)°;

on the other hand Lemma A.1(ii) and (A.S) yield

L' P(L,5)db (s)ds - LT P(r,5)d (s)ds

and the proof is complete.

E

(A.10)

(A.12)

Eg cll lesqorre(t — 7)™,

We are now ready to prove our regularity results. We will always assume
Hypotheses I, I and III.

THEOREM A 4. If x €D, and fEC({0,T),E)YNC"(J0,T),E), o €]0,1],
then the classical solution u of (A.1) belongs to C'*""**(]0, T), E).

Proor. By [1, Theorem 4.1], problem (A.1) has a unique classical solution
u(t), which is represented by (A.2). Now, by [1, Proposition 3.4 (i)-(vi)],
t—e"Yx € C'"(]0,T],E). On the other hand, by [1, Proposition 3.6(iii)],
P(-,0x€L'(0,T;E)NC"(]0,T],E), so that f—P(-,0)x EL'0,T;E)N
C°""(]0, T), E); consequently Lemma A.2(i) yields g = (1+ P)"'(f — P(-,0)x) €
L'0,T;E)NC°*"**(J0,T],E), and finally by Lemma A.3(i) we get Tg €
c (10, T), E).
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THEOREM A.5. If x € Dagy, fE C°([0,T),E), o €]0,1[, and moreover

d S
AO)x + f(0)— [a;A(t)”jl _OA(O)x € Daw,
then the strict solution u of (A.1) belongs to C'°""**(]0, T, E).

Proor. By [1, Theorem 5.1], problem (A.1) has a unique strict solution
which is given by (A.2). The result follows by Theorem A.4 since u is, in
particular, a classical solution.

THEOREM A.6. If x EDay, fE C°([0,T),E), o €]0,1[, and moreover
d -
AO)x + f(0)- [EA )" ] _A(0)x €Dson

then for each t, € |0, T] the strict solution u of (A.1) satisfies for each p €10, 1]

J

t¢lyAaAp
n-P

a0 0 -[Ea0] aos

1A ()= A0 e = CEZ A O | +1fle-surne]

with C, independent of t,.
ProoF. The function u is given by (A.2), so that

A()e"“x + L‘ A(1)e" " g(s)— g())ds

A(u(t)= +[e"-1)g(r), if t€]0,T),

A (O)x, if t =0.
Now by a recognition of the proof of [1, Theorem 5.1] it is not difficult to see that
A" x = 0| AO)x e + A 0)x
— 1A (O)e"‘“”[%A(t)_‘ LOA Ox  ast—0",

1
n-—»s,

Ll A(D)e " g(s) = g(1)lds = O(t°"*"") {lAO)x)e +]fle-qorne

+ [tA(O)erA(O)_ erA(O)(elA(())_ 1)][%‘4({)—'] A(O)x as t—>0+,
=0

(e*-1g)=0u " NAO)x e +flc-goure]
+ (MO - 1)f(0)+ (€A — 1)(e" - 1)[%/4(:)“] _AQx  asto0,
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so that as t—>0"

1
n-=p

A@u(®)=AQx =0(¢"""") (1A ©)x le +11fle= o)

+ (e 1)[A(O)x 1 £(0) - [%A(t)" L“A (O)x],

and the result follows.

Concerning maximal regularity of the strict solution, we have finally:

THEOREM A.7. Letx € Dagyand f € C°([0,T],E), o €]0,m A a]; suppose in
addition that

d . S
A (O)X + f(O) - [EA (t)_ :|’=0A (O)X [ DA(()),
and let u be the strict solution of (A.1). Thenu € C"° ([0, T], E) if and only if
A0)x + f(0)— [(%A (t)“] _A0)x € Dagfo:).

Moreover if this is the case, then

lu’lleqo.rrey + N A )u (- )lceqo.rre)

= Cz{"A O)x |le + | fllc=qo.rr.e) +

AQ)x +f(0)— [E";A(z)* ]leA(O)x

D4 oy(o.®) }

Proor. Consider the following problem:
Z'(t)-A(t)z(t)= A(O)x + f(0) - [ditA (t)“}lzoA O)x, te0,T],
z(0)=0.
By [1, Theorem 5.1] it has a unique strict solution z, given by

z(t)=J; e On(s)ds,

(A-13) h=(+ P)“(A(O)x +f(0) - [%A " ] oA (O)x>'

Define now

(A.14) w(t)=u(t)—z()— A(t) ' A(O)x,
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we claim that w € C"*([0, T], E). Indeed, w is the strict solution of
w'(t)— A()w(t)= ¢(t): =[f(t)- f(O)]
- [%A(t)"— [%A(t)"']‘=o]A(0)x, t€(0,T],
w(0)=0,

and hence w(t)= T(1+ P)'¢, where ¢ satisfies ¢ € C°([0, T],E) and ¢(0) =
0: hence our claim is proved by Lemmata A.2(ii) and A.3(ii). Moreover by
(A.10), (A.11) and (A.12) we easily get

(A.15) W' [lceqorier + A CIW(leoqo.rier S Clllewqo.rrey + A O)x e}

Thus, by (A.14) we deduce that u € C'([0,T],E) if and only if z€
C"* ({0, T], E). Now, by (A.13) and [1, Proposition 3.7(v)], we have
2= [ AW AOLh(5) - KO) - (1)~ hO)ds
+ e O (t) - h(0))+ e“h(0)+ JO " P(,5)(h(s) - h(0))ds
+ L Pt 5)h (0)ds = d%[r(h(t)— h(O)]+ e““h(0)+ P(h(0)).

As h € C"*([0,T],E) by Lemma A .2(ii), we deduce by Lemmata A.3(ii) and
A.1(ii) that z € C*([0, T],E) if and only if t—e"““h(0)€ C°([0,T],E), i.e.
(by [1, Proposition 3.4(iii)]) if and only if & (0) € Dawo,%); in addition, if this is
the case, then

(A.16) Iz'leego.mm + A ()z(llerto.rier = Cll (O)"DMO)(mw),

as is easily seen by (A.10), (A.11), (A.12) and by a revision of the proof of [1,
Proposition 3.4(iii)]. Hence we conclude that u'€ C'* ([0, T], E) if and only if
h(0) € Dawfo,*), and in this case we also get, by (A.14), (A.15) and (A.16),

' lceqorier+ | A G Yemgorrey = CAl A O)x e + I f lc=aorrer + | R O)ox gy}

The proof is complete since

h(0)= A (0)x + f(0)— [%A(t)“ LOA (O)x.
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ReEMARK A.8. Of course, Theorem A.7 has a generalized version which holds
for the strict solution of the problem with initial time £ € |0, T|:

w(t)-A@u()=f(), tE€][k,T),

(A.17) u(te) = y.

As a consequence we have:

THEOREM A.9. Letx € Daw, fE C({0, T),E)N C°(J0, T),E), 0 €]0,7 A a},
and let u be the classical solution of (A.1). Then for each t, €10, T[ we have

Alt)ults)+ f(to)— [%A (t)“]

t=

. A (to)u (t(}) (S DA(())((T,OO).

ProoOF. For each t,€]0, T, u is a strict solution of (A.17) with y = u().
Moreover u € C"*([t, T}, E) by Theorem A.4. Hence the result follows by the
generalized version of Theorem A.7.
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