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Introduction

In optimal control theory, infinite horizon problems may be difficult to treat especially if asso-

ciated with large classes of admissible controls or with state constraints. Such problems arise

naturally in economic applications, and - in some cases - crucial questions such as the existence

of solutions to the problem (namely of optimal controls) are left aside due to the technical issues

that their handling involves, despite a large literature testifying to the interest of the scientific

community about the subject.

Two such cases are the so called Ramsey-Skiba type models and the Shallow Lake type models.

The Ramsey-Skiba model dates back to Ramsey ([30], 1928) and is what is called in economy a

utility maximization problem. The original formulation by Ramsey is now a classic in economic

theory. In this formulation, the state equation has a dynamics that is globally concave as a

function of space, and the objective functional to be maximized involves a concave increasing

function of the control. In 1978, Skiba ([34]) proposed a convex-concave dynamics version of the

Ramsey model, which has since also become quite popular in growth theory. The non-concavity

assumption about the dynamics determines a significant difference not only because it increases

the descriptive capacity of the model, but also because it raises technical challenges. On the

lines of the work by Skiba, the analysis has been developed in papers such as [3], [29], and [18].

Nevertheless, a proper existence theorem had not been provided.

The archetypal Shallow Lake model was introduced in 2003 by Mäler et al. ([28]) in the context

of environmental economics. It has developed its own literature with papers including [26],

[36], [24], and [25]. The dynamics of this problem also has convex-concave behaviour, while

the objective functional - representing the social benefit of a community resulting as a trade off

between different interests - involves a function of the state and the control which is unbounded

both from above and from below. A deep study of the dynamics of optimal paths has been

carried out through the analysis of necessary conditions for optimality, both from the side of

the domain (Pontryagin’s Maximum Principle, see [36] and [24]) and from the side of the range

(Hamilton-Jacobi-Bellman equation and Dynamic Programming, see [26]) of the objective func-

tional; but, again, no results were known about the existence of an optimal control.

It is noted that both models are interested by the Skiba phenomenon, as discussed in [34] and

[36]. Even though the treatment of the subject goes beyond the scope of this thesis, the fact is
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in itself remarkable, since the possibility of having indifference points is a widely discussed topic;

a partial literature includes basic papers such as [33] and [14] (plus the fundamental paper of

Sikba [34]), as well as the more recent papers [23], [9], [37], [11], and [10] (in addition to the

already cited [36]).

The technical difficulties implied in the treatment of the existence problem relate both to the

lack of compactness and to the infinite horizon setting. These features determine the absence of

good a priori estimates which are usually the starting point of a proof based on the application

of one or more compactness theorems. In the following we make a comparison between the

proofs of some traditional existence results - namely the Filippov theorem for Mayer problems

and the Filippov-Cesari theorem for Bolza problems - and the methods we have developed in

order to face the issues that the above referred models present when addressing the problem of

existence.

The already mentioned characteristics of these models add up to, in the case of the Ramsey-Skiba

setting, a state constraint which produces further complications in many respects of any general

treatment of the subject, beyond the question of the existence of optima. The technical impli-

cations of our specific set of assumptions (including the assumption about the non-concavity of

the dynamics), as well as the other results obtained in the analysis of the Ramsey-Skiba model

are discussed in more detail in the introduction of Chapter 1.

The following outline of the Filippov-Cesari theory provides some details that aim to high-

light the intimate nature of this important construction and the profound differences with our

approach and in the respective operational contexts.

The Filippov-Cesary theory concerns finite horizon problems. Compactness of the control space

is assumed in the first and less powerful version of the theory; in the enhanced version of the

theory, due to Cesari, such assumption is dropped in favour of a coercivity assumption on the

objective functional which plays essentially the same role in the sense that it ensures that,

roughly speaking, minimizing controls can be treated as if they took values in a compact space.

A state equation of the form

ẋ (t) = f (t, x (t) , u (t)) (1)

is considered, with the assumption that f satisfies

|f (t, x, u)| ≤ 1 + |x|+ |u| , (2)

plus some Liptschitz-continuity hypothesis that guarantees the well posedness of (1) for any

measurable function u.

It is assumed that the domain of the admissible controls is a finite interval of “times” that is
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not fixed, so that the objective functional will depend on a set and on a function defined on that

set. This choice about the domains is made to include minimal-time problems in the setting.

Hence it is natural to expect that the objective functional depends separately on the control

function and on the initial and final times and states. Actually, the first existence result, due

to Filippov, has been provided for a Mayer functional of the type:

J (u) = Φ
(
au, bu, x

0
u, x

1
u

)
, (3)

defined for a function u ∈ L1 ([au, bu] ;U) such that U ⊆ RM is compact and the vector of

the corresponding terminal times and states
(
au, bu, x

0
u, x

1
u

)
remains in a fixed compact set

S ⊆ R2N+2. The function Φ : S → R is assumed to be continuous. Denoting with x (·; a, y, u)

the unique solution to (1) such that x (a) = y, we can write x1
u = x

(
bu; au, x

0
u, u
)
.

Cesari’s method extends the existence result to problems with a functional involving an in-

tegral term that depends separately on the control and the associated state. This method

is powerful enough to substitute the compactness hypothesis on the control space U with a

coercivity hypothesis on the integral part of the objective functional.

Namely, the objective functional to be minimized has the form:

J (u) =

� bu

au

L (s, x (s) , u (s)) ds+ Φ
(
au, bu, x

0
u, x

1
u

)
, (4)

and is defined in the same class as before. It is assumed that L satisfies L (t, x, u) ≥ g (u) in

its domain, for some continuous function g : U → R such that g (u) · |u|−1 → +∞ for u ∈ U ,

u→ +∞. This is called a Bolza problem.

As already pointed out, this approach includes the possibility that the initial and final condition

vary. The point is that the assumption that S is compact determines a fixed interval [A,B]

containing all the domains of the admissible controls. Actually this approach works with controls

that are extended to [A,B] by a constant and with the corresponding states; for the latter, some

Gronwall-type a priori estimates hold.

These estimates become boundedness estimates thanks to this common temporal domain of

finite measure (in other words, thanks to the finite horizon), and even uniform boundedness

estimates when U is compact. If U is not compact the coercivity assumption on L is used to

obtain the same uniform boundedness estimates for a minimizing sequence of states.

This is the starting point of the proof: given a minimizing sequence
(
x0
n, un

)
n∈N one considers

the associated states (xn)n∈N, and finds that (xn)n∈N is bounded in AC
(
[A,B] ;RN

)
. As a

consequence and with the same technique, it is proven that the minimizing states satisfy:
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k∑
i=1

|xn (ti)− xn (si)| ≤ Cε

k∑
i=1

|ti − si|+ εC (5)

(for every ε > 0 and si, ti ∈ [A,B]), or even

|xn (t)− xn (s)| ≤ C |t− s|

if U is compact. Anyway, these are uniform estimates in n allowing to apply the Ascoli-Arzelà

theorem and obtain a subsequence converging, uniformly in [A,B], to an absolutely continuous

function x∗.

The second step consists in defining a control u∗ companion to the candidate optimal state

x∗, namely such that ẋ∗ (t) = f (t, x∗ (t) , u∗ (t)) for almost every t ∈ [A,B]. In other words, one

has to prove that ẋ∗ (t) belongs to the image set f (t, x∗ (t) , ·) (U) whenever the derivative exists,

and that the preimage can be chosen in a measurable way with respect to t. The admissibility

of the control u∗ thus obtained is guaranteed by standard compactness or coercivity arguments.

The control u∗ will be optimal for the Mayer problem, since the functional in (3) depends,

continuously, only on the state. In the case of a functional of type (4), the construction is

similar but more complicated from a technical viewpoint, since it is necessary to ensure that,

besides the terminal term Φ
(
an, bn, x

0
n, x

1
n

)
, also the integral term

� bn
an
L (s, xn (s) , un (s)) ds

converges to a quantity of the desired form.

Here we outline the proof of this second step for the Mayer problem, for the sake of simplicity.

Assume that the dynamics has the form

f (t, x, u) = F (t, x) + u,

and that U is convex.

Fix ε > 0. By the equi-continuity and the uniform convergence of (xn)n, joined with the

uniform continuity of f in its (compact) domain, the quantities f (s, xn (s) , un (s)) belong to a

ε-neighbourhood of f (t, x∗ (t) , ·) (U), for n ≥ nε and |t− s| < δε. Such neighbourhood turns

out to be convex and closed by the assumptions on U and f . Thus, the integral mean

 t+h

t

f (s, xn (s) , un (s)) ds =
xn (t+ h)− xn (t)

h

remains in the same ε-neighbourhood of f (t, x∗ (t) , ·) (U) for small |h| and big n. Passing to

the limit for n → ∞, then for h → 0, we see that also ẋ∗ (t) is in the set. This is enough to
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complete the argument since ε is generic and the image f (t, x∗ (t) , ·) (U) is closed.1

As a third and final step, a measurable selection lemma - based on Lusin’s Theorem - is used to

ensure that the vector u∗ (t) satisfying ẋ∗ (t) = f (t, x∗ (t) , u∗ (t)) can be chosen with measurable

dependence on t.

Summing up, the classical control theoretic approach to the existence problem starts with the

convergence of a sequence of states and related values of the functional, and ends up with a

control function giving the two limits the desired form; in particular no direct semi-continuity

argument for the functional is used.

The approach to the existence problem that we propose goes, in a sense, in the opposite direction.

We deal with scalar state equations of the form

ẋ(t) = F (x (t)) + u(t) or ẋ(t) = F (x (t))− u(t),

where F has sub-linear convex-concave behaviour. In particular, a relation analogous to (2)

holds.

The equation is assumed to hold almost everywhere in [0,+∞), and the functional to be maxi-

mized has the form

J (u) =

� +∞

0

e−ρtL (x (t) , u (t)) dt,

where L can be unbounded both from above and from below, and u is a locally integrable,

positive function whose discounted global integral is finite. Specifically, we have L (x, u) =

log(u)− cx2 for Shallow Lake models, and L (x, u) = α (u)χ[0,+∞) (x) + minαχ(−∞,0) (x) in the

case of Ramsey-Skiba models, where α is a concave, bounded below increasing function satisfy-

ing the Inada’s conditions. Clearly, the state constraint x ≥ 0 can be embedded in the domain

of the objective functional of the latter problem in order to deal with the simpler Lagrangian

L (x, u) = α(u); further, the condition about the finiteness of the discounted integral of u can

be dropped in favour of a suitable assumption about the behaviour of α at infinity.

1Cesari’s idea to treat the Bolza problem is to study the couple of integral means(� t+h
t f (s, xn (s) , un (s)) ds,

� t+h
t L (s, xn (s) , un (s)) ds

)
and prove with an analogous technique that for

n, 1/h → ∞ it is arbitrarily near to the closed set of the couples (f (t, x∗ (t) , u) , w) such that u ∈ U and
w ≥ L (t, x∗ (t) , u) - thus obtaining:{

d
dt

x∗ (t) = f (t, x∗ (t) , u∗ (t))
d
dt

limn→∞
� t
A L (s, xn (s) , un (s)) ds ≥ L (t, x∗ (t) , u∗ (t)) .

Then one passes to integrals in the inequality. The main technical complication here is in proving that the
pointwise limit exists up to a subsequence. The complete, and non-trivial, proof of the Filippov-Cesari’s theorem
can be found in [20], Chapter III, § 5.
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We begin by considering a maximizing sequence of locally integrable controls (un)n∈N. In order

to bypass the absence of a priori estimates, we need to prove some “localization” result. For

every fixed compact interval [0, T ], we construct a new sequence
(
uTn
)
n

upon (un)n, such that(
uTn
)
n

is still maximizing and also uniformly bounded in [0, T ] by a quantity N (T ) increasing in

T . We stress that N (T ) does not depend on the original sequence nor on the index n ∈ N. By

weak (relative) compactness we can extract a sequence
(
ūTn
)
n
, weakly converging in L1 ([0, T ]).

We repeat the process for bigger and bigger intervals, each time starting from the maximizing

sequence we ended up with in the previous step. This localization procedure allows to have the

new states xTn under control, by means of a pointwise relation that is proven to hold between

xn and xTn . Such relation ensures that uTn is admissible also in the state-constrained case of the

Ramsey-Skiba model. In this case, the localization procedure ends here, essentially due to the

fact that we deal with a Lagrangian that is bounded below.

In the case of a Shallow Lake model, we need to ensure that the upper bound function N satisfies

certain additional growth conditions at infinity that will be exploited at the end of the proof.

Anyway, the main difference with the case of a partially bounded Lagrangian, is that we also

need a “lower localization” procedure.

Accordingly, we prove that for every T > 0 the sequence
(
uTn
)
n

already obtained can be consid-

ered - up to substituting a term with a more favourable one - to be bounded below in [0, T ], by

a quantity depending decreasingly on time only, which we denote by η (T ). This can be done by

a direct, constructive technique (similar to the one used in the upper localization procedure), if

the dynamics is a monotone function of the state. If the function F is not globally monotone,

we can reach an analogous conclusion, but the path is more difficult.

Let us proceed, for the moment, with the analysis of the monotone dynamics case. For every

T > 0, we have obtained subsequences
(
ūTn
)
n

such that η (T ) ≤ ūTn ≤ N (T ) almost everywhere

in [0, T ], and ūTn ⇀ uT for some uT ∈ L1 ([0, T ]). In order to merge properly the local weak

limits, the standard diagonal argument does not work, since we are in presence of two families

of sequences which a priori are not extracted one from the other. Precisely: at step T , the

converging sequence
(
ūTn
)
n

is defined as a subsequence of
(
uTn
)
n
, but the sequence

(
uT+1
n

)
n

-

that follows in the construction - is obtained by applying the uniform localization results to(
ūTn
)
n
.

Here the monotonicity of the bound functions N and η provided by the localization lemmas plays

a crucial role. Thanks to this property, we are able to define a unique locally bounded (in the L∞

norm) maximizing sequence (vn)n together with a “pre-optimal” function v ∈ L1
loc ([0,+∞)),

such that vn converges weakly to v in L1 ([0, T ]) for every T > 0.

As regards the case of non monotone dynamics, we need to introduce another tool in order to

prove the lower localization lemma, and then adapt the interpolation process (between the fam-

ilies
{(
uTn
)
n
|T > 0

}
and

{(
ūTn
)
n
|T > 0

}
) to the new operators involved in the construction.

The technical issue that emerges as a result of the non-monotonicity of the dynamics can be
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loosely described in the following way: the difference between two trajectories (for instance,

xn and xTn ) may be not controllable by a satisfactory estimate, since both trajectories could

stay in the zone where the dynamics has the most disadvantageous behaviour (in the case of

a Shallow Lake model, an increasing behaviour). Therefore, we need to guarantee that the

admissible controls can be chosen - without penalty - in a smaller class of functions that bear, in

the global integral, a “heavier” exponential discount factor, thus making the above mentioned

estimate - which is exponential, at any rate - acceptable. This procedure, that we call “discount

reduction”, is time dependent; hence its implementation will change the entire cycle of the in-

terpolation that has to be performed successively.

Thus, we start by considering a maximizing sequence (un)n and we prove that for every fixed

T > 0 it can be substituted by another maximizing sequence, say
(
ũTn
)
n
, whose components

stay in the right L1 space and, consequently, in the domain of the localization operator (clearly,

the proof of the localization lemmas becomes more complicated in this case). The operator can

be thereby evaluated in the controls ũTn to produce a sequence
(
uTn
)
n

uniformly bounded in

[0, T ] by two quantities depending only on T . Again, the lower bound function η is proven to

be decreasing and the upper bound function N is proven to be increasing.

The point is that both the discount reduction procedure and the localization procedure preserve

the values of the controls at smaller intervals: this is the stepping stone that makes the diago-

nalization effective.

Therefore, we end up again with a sequence (vn)n and an admissible v ∈ L1
loc ([0,+∞)) such

that η (T ) ≤ vn ≤ N (T ) a.e. in [0, T ] and vn ⇀ v in L1 ([0, T ]) for every T > 0.

Now, another - standard, in this case - diagonal procedure is needed in order obtain a function

u∗ ∈ L1
loc ([0,+∞)) and to extract from (vn)n a sequence (vn,n)n such that L̃ (vn,n) ⇀ L̃ (u∗),

in every L1 ([0, T ]), where L̃ = α or L̃ = log. Clearly, dealing with controls that are bounded

also from below is necessary in order to perform this diagonalization in the case L̃ = log.

The following step is the proof of the pointwise convergence of the states associated with (vn)n
to the state associated with v.

The control u∗ is eventually proven to be admissible and optimal, using a dominated convergence

argument combined with a pointwise relation between u∗ and v, which is obtained, essentially,

by the concavity of L̃. Such relation serves to combine the two convergences L̃ (vn,n) ⇀ L̃ (u∗)

in L1 ([0, T ]) for every T > 0 and x (·; vn)→ x (·; v) pointwise in [0,+∞). These considerations

are similar to a semi-continuity argument and allow to conclude the proof.

Our method is thereby presented in three successively enhanced versions, applied to as many in-

creasingly difficult existence problems: the Ramsey-Skiba problem, the monotone Shallow Lake

problem and the non-monotone Shallow Lake problem.
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The proof schemes used in the three analyses can thus be resumed in the following way:

uniform localization local compactness

two families diagonalization one family diagonalization

T+1←T

and

discount reduction uniform localization local compactness

T+1←T

two families diagonalization one family diagonalization.

These patterns may be hopefully generalized to a scheme for obtaining existence proofs, appli-

cable to a broader class of infinite horizon optimal control problems with non compact control

space.

We conclude the introduction with a remark about the original Ramsey model.

A complete (and, in our knowledge, first) mathematical treatment of the problem has been

given by Ekeland ([16]) and by Asheim and Ekeland ([2]). In these papers, the question of

existence and uniqueness of optimal paths is accurately investigated with regard both to the

classical problem and the so-called restricted problem (in which it is assumed that a trajectory

is constrained to remain within a fixed interval). The classical problem is addressed to as a

problem of the Calculus of Variations. The objective functional is considered as a function of

the state, and the optimum is proven to exist in the class of twice differentiable trajectories

whose companion control is non-negative. Clearly the latter requirement reduces to a condition

on the state and its derivative.

The candidate optimal trajectory, in this class of C2 functions, is the solution of a certain ordinary

differential equation that is written in terms of a solution V of the Hamilton-Jacobi-Bellman-

Equation (HJB). The ordinary differential equation is well-posed if V is C2. Furthermore, to

make sure that this trajectory is indeed optimal, it has to be proven that it converges at infinity.

Note that the limit is identified by analysing the Euler-Lagrange optimality conditions. The

optimal control is then obtained via a feedback relation.

The point is that both the construction of a C2 solution to HJB, that allows to define the

candidate optimal trajectory, and the proof of the necessary convergence property of the latter,

are based on the assumption that the dynamics F is concave.

On the other hand, our method (as far as existence of optima is concerned) exploits only the
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Lipschitz continuity or sub-linearity property of the dynamics and not the specific hypothesis

that there exists an interval where F is convex2. As such, the method covers also the purely

concave case of the Ramsey model, and provides a proof - alternative to the one just discussed

- of the existence of an optimal control, in a much broader class.

2For further details about the properties of the dynamics that are actually exploited in the analysis refer to
the remark at the end of subsection 1.1.2
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Chapter 1

The Ramsey-Skiba model

Utility maximization problems constitute a fundamental part of modern economic growth theory,

since the works by Ramsey ([30]), Skiba ([34]), Romer ([31]), Lucas ([27]), Barro and Sala-i-

Martin ([4]).

These models aim to formalize the dynamics of an economy throughout the quantitative de-

scription of the consumers’ behaviour. Consumers are seen as homogeneous entities, as far as

their operative decisions are concerned; hence the time series of their consuming choices, or

consumption path, is represented by a single function, and they as a collective are named social

planner, or simply agent. The agent’s purpose is to maximize the utility as a function of the

consumption path in a fixed time interval; this can be finite or more often (as far as economic

growth literature is concerned) infinite.

The model we take into consideration has three main features that enlarge its applicability

range, and, on the other hand, imply additional technical difficulties.

First, the dynamics contains a convex-concave function representing production. This non-

concavity of the production function aims to include in the description factors that can show

increasing returns, such as human capital investments. It is well known that the presence of

non-concavity in an optimization problem may complicate the study of the regularity properties

of the value function, and, consequently, the possibility of obtaining the optimum via a feedback

relation. Indeed, such relation is usually obtained with a variational approach which deals with

a C2 value function, as discussed in the main introduction.

Secondly, a state constraint is present. As we shall explain later, this is linked to the non-

concavity assumption about the dynamics; furthermore, it is needed in order that value function

is finite. This feature has, among others, the effect that any new control that one may introduce

as a technical tool must be chosen carefully since its admissibility is not guaranteed a priori.

Third, we require that the admissible controls are not more than locally integrable in the positive
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half-line: this is the maximal class if one wants the control strategy to be a function and the

state equation to have a solution. On the other side, such choice makes the application of any

classical compactness result not straightforward.

From the applications viewpoint, the target of the analysis is the study of the optimal trajec-

tories: regularity, monotonicity, asymptotic behaviour properties and similar are expected to

be investigated. These properties are still not characterized in recent literature, at least in the

above described case.

Therefore, the program is quite complex and has to be dealt with in many phases. Here we

undertake the work, providing the existence result, some properties of the optima, and a deep

study of the value function based mainly, but not exclusively, on Dynamic Programming and the

necessary conditions linked to the Bellman Functional Equation (BFE) and to the Hamilton-

Jacobi-Bellman equation (HJB). Such analysis relates to Skiba ([34]) and Askenazy - Le Van

([3]), and develops part of the work by Fiaschi and Gozzi ([18]).

We can summarize the main criticalities as follows:

1. With regard to the existence of an optimal control, we did not find a general result covering

our case, either in the classical literature, e.g. Fleming and Rishel ([20]), Cesari ([13]),

Zabczyk ([39]), Yong-Zhou ([38]), or in more recent publications, such as the book by

Carlson, Haurie and Leizarowitz ([8]) and Zaslavski’s books ([40], [41]). So we give a

direct proof of the existence of an optimal control for every fixed initial state, which is the

first, and the simplest, application of the method described in the main introduction.

2. Certain questions arise, that in other bounded-control models are not even present. Two

such questions are the finiteness of the value function and the meaningfulness of the

Hamiltonian problem, consisting in the question whether the value function is a viscosity

solution to the HJB equation. The notion of viscosity solution can be characterized both

in terms of super- and sub-differentials and of test functions; in any case these auxiliary

tools must match the necessary restrictions to the domain of the Hamiltonian function, at

least for the solutions we are interested in verifying. We are able to prove certain regularity

properties of the value function ensuring that this is the case.

3. The regularity property stated in Theorem 32.ii), which is necessary in order that the HJB

problem is meaningful for the value function, requires an existence result. Using optimal

controls, such property can be proven by a standard argument under the hypothesis that

the admissible controls are locally bounded. In our case it is necessary to come back again

to the preliminary tools (Lemmas 9 and 10) in order to prove the result for the larger class

of admissibility we have chosen, since those preliminary results guarantee that, in a way,

we can reduce to considering locally bounded control functions.
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4. The proof of the existence of a viscosity solution of HJB features a methodological speci-

ficity. Indeed, we make use again of the basic result involved in the construction of the

optimum, the localization Lemma 9.

The last point in this list deserves a short deepening. The problem of the well-posedness (namely

the existence and uniqueness of a viscosity solution) of the HJB equation has been examined

in works such as [35], [7] and [22] in the specific case of an equation resulted from a state con-

strained optimal control problem.

Essentially, the aim of these works is to identify the general form assumed by the HJB equation

when it derives from such kind of problems, in order to study the equation independently using

techniques from the fields of PDEs and viscosity solutions.

It is not difficult to realize that the link with a constrained control problem induces some con-

ditions at the boundary of the state space, i.e. the closed subset Ω of RN where the admissible

trajectories are constrained to remain and that coincides with the domain of the HJB equation.

Such boundary conditions must be implemented in the new definition of “constrained” viscosity

solution (in the double sense that it derives from a constrained OC problem and includes some

boundary constraint) in terms, say, of test functions.

The simplest and, in a way, most natural of these boundary conditions can be obtained from

the observation that the global dynamics - namely the function b such that the state equation

can be written ẋ = b (x, u) - forms a dull corner with the exterior normal vector at (optimal)

boundary points, meaning that 〈b (x0, u
∗(0)) , ν (x0)〉 ≤ 0 where x0 ∈ ∂Ω and u∗ is optimal at

x0. Starting from this and assuming that the value function is C1, one discovers that the latter

still verifies, in x0, the subsolution condition in the case of a maximum value problem, or the

supersolution condition in the case of a minimum value problem. It is to be noted that the

reasoning cannot be replicated in order to ensure that the regular value function is a viscosity

solution at ∂Ω.

Ultimately, the additional boundary condition simply consists in requiring that the definition of

viscosity subsolution (or supersolution for a minimum value problem) holds also at boundary

points.

Soner ([35]) identifies this condition and consequently defines the notion of constrained viscosity

solution: v is such if and only if v is a subsolution on Ω and a supersolution on Ω (in his setting,

the problem is that of minimizing the objective functional). Then he proves the well-posedness

of HJB in this “weak-constrained” sense in the class of bounded uniformly continuous functions

of Ω.

In [7], Capuzzo-Dolcetta and Lions maintain the same notion of constrained viscosity solution,

and prove the well-posedness in the class C
(
Ω
)

under the assumption that Ω is bounded (hence

they drop uniform continuity in favour of the mere continuity). Moreover, they provide further

convergence and regularity results for the solution under additional hypotheses about the dy-
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namics and the running cost.

Ishii and Koike ([22]) also assume that Ω is bounded, but consider a different notion of viscosity

solution involving the upper and lower semicontinuous envelopes of the candidate solution, plus

boundary conditions for both the concept of sub- and supersolution. Basically, for them v is

a constrained viscosity solution of HJB if and only if v∗ is a subsolution and v∗ is a superso-

lution (with a slight difference in the equations considered in the two cases). They prove the

well-posedness result among the bounded functions of Ω, thus waiving the continuity.

The point is that all of these authors assume the boundedness of the running cost and of the

global dynamics as well as (directly or indirectly) the compactness of the control space - which

follows for the present model from the boundedness of the global dynamics (x, c) 7→ F (x)−c, in

any case. In our problem, the control space, the state space, the dynamics and the instantaneous

utility are unbounded; hence, the aforementioned results are not applicable at all here. Indeed,

as a consequence of the assumptions, the value function is easily proven to be unbounded and

therefore to be outside the class where well-posedness is proven in each of the examined papers.

In this thesis we are concerned only about the existence of a solution to HJB. It is to be noted

that, even though the result is proven for the open set Ω = (0,+∞) (Theorem 42), it is not

difficult to show that the value function is indeed a viscosity subsolution on Ω, thus being a

constrained viscosity solution in the sense of Soner.

Having considered the foregoing, the technical peculiarity at point 4 above appears to be justified

and in fact natural, since the localization lemma must be understood as a sort of compactness

generator.

The contents of the chapter are consequently arranged. The first section intends to clear up the

genesis of the model and the economic motivations for the assumptions.

Then comes a technical section where some preliminary results that are crucial for the devel-

opment of the theory, such as Lemmas 9 and 10, are proven. In the same section the reader

will find other results like the characterization of admissible constant controls for every initial

state. We also show some basic techniques for manipulating admissible controls that preserve

admissibility, and how these techniques can be used to prove two other “localization lemmas”

from below. These lemmas are not necessary in proving the main results of the chapter, but

have meaning from the methodological viewpoint, and may reveal themselves useful in extending

the existence result to other monotone, state constrained problems with completely unbounded

running cost or instantaneous utility.

Afterwards, we provide some basic properties of the value function, such as finiteness and be-

haviour at the boundary of the domain. These results require careful handling of the data and

some standard results about ordinary differential equations, but do not require optimal controls.

In the subsequent section we prove the existence of an optimal strategy for every initial state:

this is the first application of the method described in the main introduction of the thesis.
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Then we prove some boundedness properties of optimal controls and optimal states; these prop-

erties, besides having a meaning at application level, seem to be needed for the study of the

necessary optimality conditions for the controls. The proof exploits the manipulation techniques

from section 1.2.

Next we are able to prove other important regularity properties of the value function, includ-

ing local Lipschitz continuity and lower boundedness of the difference quotients, using optimal

controls. This section can also be considered preparatory for the subsequent one.

Eventually we give an application of the methods of Dynamic Programming. As mentioned

before, the proof of the admissibility of the value function as a viscosity solution of HJB is

made more complicated by the use of the preliminary lemmas; in return, it allows to obtain

the result independently of the regularity of the Hamiltonian function. A “backward” Dynamic

Programming analysis is also performed, reaching the conclusion that the value function is, at

least at optimal points, a bilateral viscosity solution of the Hamilton-Jacobi-Bellman equation.

As already mentioned, due to the unboundedness of the instantaneous utility, the domain of the

Hamiltonian of our problem has some restrictions that are reflected in restrictions to the class of

the functions for which the HJB equation is meaningful from the viscosity viewpoint. This leads

us to introduce the class C+ (Definition 36), whose members are such that their companion test

functions (involved in the definition of viscosity solution) are in the domain of the Hamiltonian

together with their derivatives. The value function turns out to be in C+ thanks to property ii),

Theorem 32. We want to stress that the proof of the latter property deeply exploits the local-

ization lemma: both the monotonicity in time and space of the bounding function N introduced

in the lemma is used. In particular, monotonicity in space is needed to prove the inequality for

h < 0.

1.1 Construction of the model

1.1.1 Economic justification

Utility functional

We assume the existence of a representative dynasty in which all members share the same

endowments and consume the same amount of a certain good. Our goal is to describe the

dynamics of the capital accumulated by each member of the dynasty in an infinite-horizon

period and to maximize its intertemporal utility (considered as a function of the quantity of

good c that has been consumed). Clearly, consuming is seen as the agent’s control strategy,

and the set of consumption functions (over time) will be a superset of the set of the admissible

control strategies.
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First, we need a notion of instantaneous utility, depending on the consumptions, in order to

define the inter-temporal utility functional. We will assume that instantaneous utility, which we

denote by u, is a strictly increasing and strictly concave function of the consumptions, and that

it is twice continuously differentiable. Moreover, we will assume the usual Inada’s conditions,

that is to say:

lim
c→0+

u′ (c) = +∞, lim
c→+∞

u′ (c) = 0.

We will also use the following assumptions on u:

u (0) = 0, lim
c→+∞

u (c) = +∞.

With this material, we can define the inter-temporal utility functional, which, as usual, must

include a (exponential) discount factor expressing time preference for consumption:

U (c (·)) :=

� +∞

0

e−ρ̂tentu (c (t)) dt (1.1)

where ρ̂ ∈ R is the rate of time preference and n ∈ R is the growth rate of population. The

number of members of the dynasty at time zero is normalized to 1.

Production function and constraints

We consider the production or output, denoted by F , as a function of the average capital of

the representative dynasty, which we denote by k. First, we assume the usual hypothesis of

monotonicity, regularity and unboundedness about the production, that is to say: F is strictly

increasing and continuously differentiable from R to R, and

F (0) = 0, lim
k→+∞

F (k) = +∞

where we may assume F (x) < 0 for every x ∈ (−∞, 0), since the assumption that F is defined

in (−∞, 0) is merely technical, as we will see later; this way we distinguish the not.

Next, we make some specific requirements. As we want to deal with a non-monotonic marginal

product of capital, we assume that, in [0,+∞), F is first strictly concave, then strictly convex and

then again strictly concave up to +∞. This means that in the first phase of capital accumulation,

the production shows decreasing returns to scale, which become increasing from a certain level

of pro capite capital k. Then, when pro capite endowment exceed a threshold k > k, decreasing

returns to scale characterize the production anew.

Moreover, we ask that the marginal product in +∞ is strictly positive, so that we can deal

with endogenous growth. Observe that this limit surely exists, as F ′ is (strictly) decreasing in
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a neighbourhood of +∞. Of course the assumption is equivalent to the fact that the average

product of capital tends to a strictly positive quantity for large values of the average stock of

capital. Moreover, requiring that the marginal product has a strictly positive lower bound is

necessary to ensure a positive long-run growth rate.

As far as the agent’s behaviour is concerned, the following constraints must be satisfied, for

every time t ≥ 0:

k (t) ≥ 0, c (t) ≥ 0

i (t) + c (t) ≤ F (k (t)) , k̇ (t) = i (t)

where i (t) is the per capita investment at time t. Observe that the first assumption is needed

in order to make the agent’s optimal strategy possibly different from the case of monotonic

marginal product. In fact if condition ∀t ≥ 0 : k (t) ≥ 0 was not present, then heuristically the

convex range of production function would be not relevant to establish the long-run behaviour

of economy, since every agent would have the possibility to get an amount of resources such

that he can fully exploit the increasing return; therefore only the form of production function

for large k would be relevant.

Another heuristic remark turns out to be crucial: the monotonicity of u respect to c implies

that, if c is an optimal consumption path, then the production is completely allocated between

investment and consumption, that is to say i (t) + c (t) = F (k (t)) for every t ≥ 0. This remark,

combined with the last of the above conditions implies that the dynamics of capital allocation,

for an initial endowment k0 ≥ 0, is described by the following Cauchy’s problem:k̇ (t) = F (k (t))− c (t) for t ≥ 0

k (0) = k0

(1.2)

Considering the first two constraints, the agent’s target can be expressed the following way:

given an initial endowment of capital k0 ≥ 0, maximize the functional in (1.1), when c (·) varies

among measurable functions which are everywhere positive in [0,+∞) and such that the unique

solution to problem (1.2) is also everywhere positive in [0,+∞); the latter requirement is usually

called a state constraint.

A few reflections are still necessary in order to begin the analytic work. First, we will consider

only the case when the time discount rate ρ̂ and the population growth rate n satisfy

ρ̂− n > 0,

which is the most interesting from the economic point of view. Second, we weaken the re-

quirement that c is integrable and positive in [0,+∞) (in order that c is admissible) to the
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requirement that c is locally integrable and almost everywhere positive in [0,+∞).

Finally, we need another assumption about instantaneous utility u so that the functional in (1.1)

is finite. To identify the best hypothesis, we temporarily restrict our attention to the particular

but significant case in which u is a concave power function and F is linear; namely:

u (c) = c1−σ, c ≥ 0

F (k) = Lk, k ≥ 0

for some σ ∈ (0, 1) and L > 0 (of course in this case F does not satisfy all of the previous

assumptions). Using Gronwall’s Lemma, it is easy to verify that for any admissible control c

(starting from an initial state k0) and for every time t ≥ 0,
� t

0
c (s) ds ≤ k0e

Lt. Hence, setting

ρ = ρ̂− n:

U (c (·)) = lim
T→+∞

� T

0

e−ρtu (c (t)) dt

= lim
T→+∞

e−ρT
� T

0

u (c (s)) ds+ lim
T→+∞

ρ

� T

0

e−ρt
� t

0

u (c (s)) dsdt.

Hence using Jensen inequality, we reduce the problem of the convergence of U (c (·)) to the

problem of the convergence of � +∞

1

te−ρteL(1−σ)tdt

which is equivalent to the condition L (1− σ) < ρ. Perturbing this clause by the addition

of a positive quantity ε0 we get (L+ ε0) (1− σ) < ρ − ε0 which is in its turn equivalent to

the requirement that the function eε0te−ρt
(
e(L+ε0)t

)1−σ
= eε0te−ρtu

(
e(L+ε0)t

)
tends to 0 as

t→ +∞.

Turning back to the general case, we are suggested to assume precisely the same condition,

taking care of defining the constant L as limk→+∞ F ′ (k) (which has already been assumed to

be strictly positive).

1.1.2 Formal definition

Hence the mathematical frame of the economic problem can be defined precisely as follows:

Definition 1. For every k0 ≥ 0 and for every c ∈ L1
loc ([0,+∞) ,R):

k (·; k0, c) is the only solution to the Cauchy’s problemk (0) = k0

k̇ (t) = F (k (t))− c (t) t ≥ 0
(1.3)
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in the unknown k, where F : R→ R has the following properties:

F ∈ C1 (R,R) , F ′ > 0 in R, F (0) = 0, lim
x→+∞

F (x) = +∞, lim
x→+∞

F ′ (x) > 0,

F is concave in [0, k] ∪
[
k,+∞

)
for some 0 < k < k and F is convex in

[
k, k
]

Moreover, we set L := lim
x→+∞

F ′ (x).

Definition 2. Let k0 ≥ 0 .

The set of admissible consumption strategies with initial capital k0 is

Λ (k0) :=
{
c ∈ L1

loc ([0,+∞) ,R) /c ≥ 0 almost everywhere, k (·; k0, c) ≥ 0
}

The intertemporal utility functional U (·; k0):Λ (k0)→ R is

U (c; k0) :=

� +∞

0

e−ρtu (c (t)) dt ∀c ∈ Λ (k0)

where ρ > 0, and the function u : [0,+∞) → R, representing instantaneous utility, is strictly

increasing and strictly concave and satisfies:

u ∈ C2 ((0,+∞) ,R) ∩ C0 ([0,+∞) ,R) , u (0) = 0, lim
x→+∞

u (x) = +∞

lim
x→0+

u′ (x) = +∞, lim
x→+∞

u′ (x) = 0 (1.4)

∃ε0 > 0 : lim
t→+∞

eε0te−ρtu
(
e(L+ε0)t

)
= 0

The value function V : [0,+∞)→ R is

V (k0) := sup
c∈Λ(k0)

U (c; k0) ∀k0 ≥ 0

Remark 3. The last condition in (1.4) implies:

� +∞

0

e−ρtu
(
e(L+ε0)t

)
dt < +∞,

� +∞

0

te−ρtu
(
e(L+ε0)t

)
dt < +∞.
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Important remark. The structural assumptions about the dynamics of the problem (Definition

1) are such as to include the setting of Skiba’s well-known generalization of the Ramsey problem,

introduced in [34]. In particular, it is assumed that production, represented by the space-

dynamics function F , has concave-convex-concave behavior in its domain (i.e., with respect to

capital).

It is here essential to observe that this particular qualitative property could indeed be dropped

in favour of a much weaker sub-linearity assumption, which is actually sufficient to extend our

results to the concave dynamics case of the original Ramsey model (as partially specified in the

introduction) as well as to the convex-concave case of the problem in [34], and has direct affinity

with the usual minimal layout required for a general optimal control problem.

• In fact, global Lipschitzianity and monotonicity are the only properties of F that, through

Remarks 7 and 8, are used in the proof of the existence of an optimal control (see Section

1.4 and Lemma 9). Remark 7 essentialy states that the derivative of F is non-negative and

bounded above, while Remark 8 establishes comparative estimates for admissible paths,

exploiting a sub-linearity property of F of the form

F (x) ≤Mx ∀x ≥ 0,

which is stated in Remark 4 as an immediate consequence of the boundedness of F ′.

• On the other hand, the qualitative properties of the value function in Sections 1.3 and

1.6 depend on sub-linearity estimates for F other than that used in the existence proof

(namely the estimate in Remark 4); such additional estimates are the relation in Remark

18 and relation (1.29) in the proof of Theorem 22, point iii), and follow essentially from

the fact the F has an asymptote.

• Eventually, the whole treatment of the necessary conditions for a function of the initial

state to be the value function of the problem - contained in the subsequent Section 1.7 -

prescinds from the particular convex-concave behaviour of the dynamics.

In particular, none of the above mentioned qualitative characteristics depend on the assumption

that there exists an interval where F in convex. Indeed, all such proofs are based only - as far as

the dynamics is concerned - on sub-linearity properties of the same nature as the assumptions

usually invoked in a multidimensional problem (in other words, when the dynamics F takes

vectorial values).

We stress that the choice to base the analysis on the assumptions that define the Ramsey-Skiba

model is made to enlighten one of the most substantial applications of the mathematical methods

developed in this thesis.
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The same philosophy undergoes the layout chosen for the study of the problems in Chapters 2

and 3.

1.2 Technical tools

In this section we provide technical result which will reveal themselves fundamental to prove

the existence of an optimum for this problem and to make the Dynamic Programming approach

rigorous. Some of these tools will be developed to form the basis for a more general method

for proving existence results in infinite horizon settings with non-compact control space. Such

method will be empowered to apply to the more difficult case of an “instantaneous utility” which

is unbounded both from below and from above - as in the case of Shallow Lake type models.

Remark 4. Set

M := max
[0,+∞)

F ′ = max
{
F ′ (0) , F ′

(
k̄
)
, L
}
.

Recalling that F is strictly increasing with F (0) = 0, we see that, for any x, y ∈ [0,+∞):

|F (x)− F (y)| ≤M |x− y|

F (x) ≤Mx

In particular F is Lipschitz-continuous.

This implies that the Cauchy’s problem (1.3) admits a unique global solution (that is to say,

defined on [0,+∞)) - even if the dynamics is not continuous with respect to the time variable.

Indeed the mapping

F (k) (t) := k0 +

� t

0

F (k (s)) ds−
� t

0

c (s) ds

is a contraction on the space X :=
(
C0
([

0, 1
1+M

])
, ‖·‖∞

)
, and so admits a unique fixed point

k (·; k0, c). Considering the mapping

F (k) (t) := k

(
1

1 +M
; k0, c

)
+

� t

1
1+M

F (k (s)) ds−
� t

1
1+M

c (s) ds

on the space X ′ :=
(
C0
([

1
1+M

, 2
1+M

])
, ‖·‖∞

)
, one can extend the function k (·; k0, c) to the

interval
[

1
1+M

, 2
1+M

]
, and so on.

In a few words, the existence and uniqueness of the solution depends on the fact that the

dynamics in equation (1.3) is defined for every state and is globally Lipschitz-continuous.
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Remark 5. We recall that if k1 and k2 are two solutions of (1.3), then the function

h (t) :=


F (k1 (t))− F (k2 (t))

k1 (t)− k2 (t)
if k1 (t) 6= k2 (t)

F ′ (k1 (t)) if k1 (t) = k2 (t)

is continuous in [0,+∞).

As a consequence, we have a well known comparison result, which in our case can be stated as

follows:

Let k1, k2 ≥ 0, c1, c2 ∈ L1
loc ([0,+∞) ,R), T0 ≥ 0 and T1 ∈ (T0,+∞] such that c1 ≤ c2 almost

everywhere in [T0, T1]. Then the following implications hold:

k (T0; k1, c1) = k (T0; k2, c2) =⇒ ∀t ∈ [T0, T1] : k (t; k1, c1) ≥ k (t; k2, c2) (1.5)

k (T0; k1, c1) > k (T0; k2, c2) =⇒ ∀t ∈ [T0, T1] : k (t; k1, c1) > k (t; k2, c2) . (1.6)

Lemma 6. There exists a function g : (0,+∞)→ (0,+∞) which is convex, strictly decreasing

and such that

g (x) ≤ u′ (x) ∀x > 0.

Proof. Let

Σu′ :=
{

(x, y) ∈ (0,+∞)
2
/y ≥ u′ (x)

}
Ku′ :=

⋂{
K ∈ P

(
R2
)
/K is closed and convex, K ⊇ Σu′

}
.

Thus Ku′ is the convex closure of Σu′ . Observe that, for any x > 0, the function Hx (y) := (x, y)

belongs to C0
(
R,R2

)
, so any set of the form

{y ≥ 0/ (x, y) ∈ Ku′} = H−1
x (Ku′)

⋂
[0,+∞)

is closed in R (since Ku′ is closed), and consequently has a minimum element. Now define

∀x > 0 : g (x) := min {y ≥ 0/ (x, y) ∈ Ku′} .

i) This definition implies that for every (x, y) ∈ Ku′ , g (x) ≤ y; hence

g (x) ≤ u′ (x) ∀x > 0

because for any x > 0, (x, u′ (x)) ∈ Σu′ ⊆ Ku′ .
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ii) Secondly, g is convex in (0,+∞). Let x0, x1 > 0 and λ ∈ (0, 1). By definition of g,

(x0, g (x0)) , (x1, g (x1)) ∈ Ku′ , which is a convex set. Hence

(1− λ) (x0, g (x0)) + λ (x1, g (x1)) ∈ Ku′ .

By the first property in i), this implies

g ((1− λ)x0 + λx1) ≤ (1− λ) g (x0) + λg (x1) .

iii) Observe that the definition of g does not exclude that g (x) = 0 for some x > 0. Indeed we

show that g > 0 in (0,+∞).

Fix x > 0, and consider the closed-convex approximation of Σu′

Kx :=

{
(t, y) ∈ [0, x]× [0,+∞) /y ≥ u′ (x)

x
(x− t)

}⋃
[x,+∞)× [0,+∞) .

By construction Ku′ ⊆ Kx which implies (t, g (t)) ∈ Kx for any t > 0. In particular, for every

t ∈ (0, x):

g (t) ≥ u′ (x)

x
(x− t) > 0

because u′ > 0. Hence g > 0 in (0, x). Since x > 0 is generic, we obtain g > 0 in (0,+∞).

iv) Finally we show thatg is strictly decreasing. Take 0 < x0 < x1. By ii) and by definition of

convexity, for every n ∈ N:

g (n (x1 − x0) + x0) ≥ n [g (x1)− g (x0)] + g (x0) .

Hence by the assumptions on u and by i):

0 = lim
n→+∞

u′ (n (x1 − x0) + x0) ≥ lim sup
n→+∞

g (n (x1 − x0) + x0)

≥ lim
n→+∞

n [g (x1)− g (x0)] + g (x0)

which implies g (x1) < g (x0), remembering that g > 0 by iii).

Remark 7. The function h defined in Remark 5 satisfies

0 ≤ h ≤M in [0,+∞) .

where M is defined as in Remark 4.
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Remark 8. Let k0 ≥ 0 and c ∈ Λ (k0). Then, for every t ≥ 0:

k (t; k0, c) ≤ k0e
Mt

� t

0

c (s) ds ≤ k0e
Mt

Indeed, by Remark 4 and remembering that c ≥ 0, we have, for every t ≥ 0, k̇ (t; k0, c) ≤
Mk (t; k0, c) - which implies by (1.5):

k (t; k0, c) ≤ k0e
Mt ∀t ≥ 0.

Now integrating both sides of the state equation, again by Remark 4 and by the fact that

k (·; k0, c) ≥ 0 we see that, for every t ≥ 0:

� t

0

c (s) ds = k0 − k (t; k0, c) +

� t

0

F (k (s; k0, c)) ds

≤ k0 +M

� t

0

k (s; k0, c) ds

≤ k0 +Mk0

� t

0

eMsds = k0e
Mt.

Lemma 9. (Localization Lemma). There exists a function N : (0,+∞)
2 → (0,+∞), increasing

in both variables, such that:

for every (k0, T ) ∈ (0,+∞)
2

and every c ∈ Λ (k0), there exists a control function cT ∈ Λ (k0)

satisfying

U
(
cT ; k0

)
≥ U (c; k0)

cT = c ∧N (k0, T ) almost everywhere in [0, T ]

In particular, cT is bounded above, in [0, T ], by a quantity which does not depend on the original

control c, but only on T and on the initial status k0.

Proof. Let g be the function defined in Lemma 6 and β :=
log(1+M)

M
. Define, for every (k0, T ) ∈

(0,+∞)
2

:

α (k0, T ) := βe−ρ(T+β)g

[
k0

(
eM(T+β)

β
+ eMT

)]
N (k0, T ) := inf

{
Ñ > 0/∀N ≥ Ñ : u′ (N) < α (k0, T )

}
= inf

{
Ñ > 0/u′

(
Ñ
)
< α (k0, T )

}
.
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In the first place, N (k0, T ) 6= +∞, because α (k0, T ) > 0 for every k0 > 0, T > 0 and

limN→+∞ u′ (N) = 0.

In the second place, u′ ((0,+∞)) = (0,+∞), which implies N (k0, T ) > 0: otherwise, since

(u′)
−1

(α (k0, T )) > 0, there would exist N > 0 such that

N < (u′)
−1

(α (k0, T ))

u′ (N) < α (k0, T )

which is absurd because u′ is decreasing; hence the quantity u′ (N (k0, T )) is well defined. More-

over by the continuity of u′,

u′ (N (k0, T )) = α (k0, T ) . (1.7)

The function N (·, ·) is also increasing in both variables, because α (·, ·) is decreasing in both

variables and u′ is decreasing.

Indeed, for k0 ≤ k1 and for a fixed T > 0, suppose that N (k1, T ) < N (k0, T ). Then by

definition of infimum we could choose Ñ ∈ [N (k1, T ) , N (k0, T )) such that u′
(
Ñ
)
< α (k1, T ),

which implies

u′
(
Ñ
)
< α (k0, T )

by the monotonicity of α. Since Ñ > 0, this implies N (k0, T ) ≤ Ñ , a contradiction. With an

analogous argument we prove that N (·, ·) is increasing in the second variable.

Now let k0, T > 0 and c ∈ Λ (k0) as in the hypothesis. If c ≤ N (k0, T ) almost everywhere in

[0, T ], then define cT := c. If, on the contrary, c > N (k0, T ) in a non-negligible subset of [0, T ],

then define:

cT (t) :=


c (t) ∧N (k0, T ) if t ∈ [0, T ]

c (t) + IT if t ∈ (T, T + β]

c (t) if t > T + β

where IT :=
� T

0
e−ρt (c (t)− c (t) ∧N (k0, T )) dt. Observe that by Remark 8:

0 < IT ≤
� T

0

(c (t)− c (t) ∧N (k0, T )) dt

≤
� T

0

c (t) dt

≤ k0e
MT (1.8)

In order to prove the admissibility of such control function, we compare the orbit k := k (·; k0, c)
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to the orbit kT := k
(
·; k0, c

T
)
. In the first place, observe that by (1.5) and by definition of cT :

kT (t) ≥ k (t) ∀t ∈ [0, T ] (1.9)

Now by the state equation, we have:

˙kT − k̇ = F
(
kT
)
− F (k) + c− cT . (1.10)

Set for every t ≥ 0:

h (t) :=


F(kT (t))−F (k(t))

kT (t)−k(t)
if kT (t) 6= k (t)

F ′ (k (t)) if kT (t) = k (t)

as in Remark 5. Hence by (1.10)

˙kT (t)− k̇ (t) = h (t)
[
kT (t)− k (t)

]
+ c (t)− cT (t) ∀t ≥ 0.

By Remark 5, the function h is continuous in [0,+∞), so this is a typical linear equation with

measurable coefficient of degree one, satisfied by kT − k. Hence, multiplying both sides by the

continuous function t→ exp
(
−
� t

0
h (s) ds

)
, we obtain:

d

dt

{[
kT (t)− k (t)

]
e−

� t
0
h(s)ds

}
=
[
c (t)− cT (t)

]
e−

� t
0
h(s)ds ∀t ≥ 0

which implies, integrating between 0 and any t ≥ 0:

kT (t)− k (t) =

� t

0

[
c (s)− cT (s)

]
e
� t
s
hds (1.11)

Now observe that

h ≤M in [0,+∞) and h ≥ 0 in [0, T ] (1.12)

by (1.9) and the monotonicity of F (or, directly, by Remark 7). Set t ∈ (T, T + β]; then by

(1.11) and (1.12):

kT (t)− k (t) =

� T

0

[c (s)− c (s) ∧N (k0, T )] e
� t
s
hds− IT ·

� t

T

e
� t
s
hds

≥
� T

0

[c (s)− c (s) ∧N (k0, T )] ds− IT ·
� t

T

eM(t−s)ds

≥
� T

0

e−ρs [c (s)− c (s) ∧N (k0, T )] ds− IT ·
� T+β

T

eM(T+β−s)ds

= IT

(
1− eMβ − 1

M

)
= 0 (1.13)
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This also implies, by (1.5) and by definition of cT ,

kT (t) ≥ k (t) ∀t ≥ T + β

Such inequality, together with (1.9) and (1.13), gives us the general inequality

kT (t) ≥ k (t) ≥ 0 ∀t ≥ 0.

This implies, associated with the obvious fact that cT ≥ 0 almost everywhere in [0,+∞), that

cT ∈ Λ (k0).

Now we prove the “optimality” property of cT respect to c. By the concavity of u, and setting

N := N (k0, T ) for simplicity of notation, we have:

U (c; k0)− U
(
cT ; k0

)
=

� +∞

0

e−ρt
[
u (c (t))− u

(
cT (t)

)]
dt

=

�
[0,T ]∩{c≥N}

e−ρt [u (c (t))− u (c (t) ∧N)] dt

+

� T+β

T

e−ρt [u (c (t))− u (c (t) + IT )] dt

≤
�

[0,T ]∩{c≥N}
e−ρtu′ (c (t) ∧N) [c (t)− c (t) ∧N ] dt

−IT
� T+β

T

e−ρtu′ (c (t) + IT ) dt

= u′ (N)

� T

0

e−ρt [c (t)− c (t) ∧N ] dt

−IT
� T+β

T

e−ρtu′ (c (t) + IT ) dt

= IT

[
u′ (N)−

� T+β

T

e−ρtu′ (c (t) + IT ) dt

]
. (1.14)

Now we exhibit a certain lower bound which is independent on the particular control function
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c. By Jensen inequality, by Lemma 6 and by (1.8), we have:

� T+β

T

e−ρtu′ (c (t) + IT ) dt ≥
� T+β

T

e−ρtg (c (t) + IT ) dt

≥ e−ρ(T+β)

� T+β

T

g (c (t) + IT ) dt

≥ βe−ρ(T+β)g

(
1

β

� T+β

T

[c (t) + IT ] dt

)

≥ βe−ρ(T+β)g

(
1

β

� T+β

0

c (t) dt+ IT

)

≥ βe−ρ(T+β)g

[
k0

(
eM(T+β)

β
+ eMT

)]
= α (k0, T ) .

Hence by (1.7) and (1.14):

U (c; k0)− U
(
cT ; k0

)
≤ IT

[
u′ (N (k0, T ))−

� T+β

T

e−ρtu′ (c (t) + IT ) dt

]
≤ IT [u′ (N (k0, T ))− α (k0, T )] = 0.

Lemma 10. Let 0 < k0 < k1 and c ∈ Λ (k0). Then there exists a control function ck1−k0 ∈
Λ (k1) such that

U
(
ck1−k0 ; k1

)
− U (c; k0) ≥ u′ (N (k0, k1 − k0) + 1)

� k1−k0

0

e−ρtdt

where N is the function defined in Lemma 9.

Proof. Fix k0, k1 and c as in the hypothesis and take ck1−k0 as in Lemma 9 (where it is under-

stood that T = k1 − k0).Then define:

ck1−k0 (t) :=

ck1−k0 (t) + 1 if t ∈ [0, k1 − k0)

ck1−k0 (t) if t ≥ k1 − k0

First we prove that ck1−k0 ∈ Λ (k1), showing that

k := k
(
·; k1; ck1−k0

)
> k

(
·; k0, c

k1−k0
)

=: k (1.15)
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over (0,+∞). Suppose by contradiction that this is not true, and take τ := inf {t > 0/k (t) ≤ k (t)}.
Then by the continuity of the orbits, k (τ) ≤ k (τ), which implies τ > 0. Considering the orbits

as solutions to an integral equation we have:

k (τ) = k0 +

� τ

0

F (k (t)) dt−
� τ

0

ck1−k0 (t) dt

k (τ) = k1 +

� τ

0

F (k (t)) dt−
� τ

0

ck1−k0 (t) dt−min {τ, k1 − k0} .

Hence

0 ≥ k (τ)− k (τ) = k1 − k0 +

� τ

0

[F (k (t))− F (k (t))] dt−min {τ, k1 − k0}

≥
� τ

0

[F (k (t))− F (k (t))] dt

By the definition of τ and the strict monotonicity of F , this quantity must be strictly positive,

which is absurd. Hence

k
(
·; k1; ck1−k0

)
> k

(
·; k0, c

k1−k0
)
≥ 0 in [0,+∞)

ck1−k0 ≥ ck1−k0 ≥ 0 a.e. in [0,+∞)

which implies ck1−k0 ∈ Λ (k0).

Secondly, remembering the properties of ck1−k0 given by Lemma 9, we have

U
(
ck1−k0 ; k1

)
− U (c; k0) ≥ U

(
ck1−k0 ; k1

)
− U

(
ck1−k0 ; k0

)
=

� k1−k0

0

e−ρt
[
u
(
ck1−k0 (t) + 1

)
− u

(
ck1−k0 (t)

)]
dt

≥
� k1−k0

0

e−ρtu′
(
ck1−k0 (t) + 1

)
dt

≥ u′ (N (k0, k1 − k0) + 1)

� k1−k0

0

e−ρtdt

which concludes the proof.

Here is a simple characterisation of the admissible constant controls.

Proposition 11. Let k0, c ≥ 0. Then

i) k (·; k0, F (k0)) ≡ k0

ii) the function constantly equal to c is admissible at k0 (which we write c ∈ Λ (k0)) if, and only

if

c ∈ [0, F (k0)] .
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In particular the null function is admissible at any initial state k0 ≥ 0.

Proof. i) By the uniqueness of the orbit.

ii)(⇐=) First observe that F (k0) ∈ Λ (k0), by i). Assume c ∈ [0, F (k0)) and set k := k (·; k0, c).

Hence

k̇ (0) = F (k0)− c > 0

which implies, by the continuity of k̇, that we can find δ > 0 such that k is strictly increasing

in [0, δ]. In particular k̇ (δ) = F (k (δ))− c > F (k0)− c because F is strictly increasing too. By

the fact that k̇ (δ) > 0 we see that there exists δ̂ > δ such that k is strictly increasing in
[
0, δ̂
]

-

and so on. Hence k is strictly increasing in [0,+∞) with

k̇ ≥ F (k0)− c in [0,+∞).

Hence k tends to +∞ for t→ +∞. This shows that c ∈ Λ (k0).

(=⇒) Suppose that c > F (k0) and set again k := k (·; k0, c). Then

k̇ (0) = F (k0)− c < 0

so that we can find δ > 0 such that k is strictly decreasing in [0, δ], and k̇ (δ) = F (k (δ))− c <
F (k0) − c < 0. Hence one can arbitrarily extend the neighbourhood of 0 in which k̇ is strictly

less than the strictly negative constant F (k0)− c, which implies that

lim
t→+∞

k (t) = −∞.

Hence k cannot be everywhere-positive and c /∈ Λ (k0).

Corollary 12. The set sequence (Λ (k))k≥0 is strictly increasing, that is:

Λ (k0) ( Λ (k1)

for every 0 ≤ k0 < k1.

Proof. For every c ∈ Λ (k0), k (·; k0, c) ≤ k (·; k1, c) by 1.5, which implies the second orbit being

positive, and so c ∈ Λ (k1).

On the other hand, by Proposition 11 and by the strict monotonicity of F , the constant control

ĉ ≡ F
(
k̂
)

belongs to Λ (k1) \ Λ (k0) for any k̂ ∈ (k0, k1].

We now describe two basic methods for constructing a control admissible at point k1 given a

control which is admissible at a different point k0. The first remark generalises the construction

in Lemma 10.
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Remark 13. (Admissibility of a control obtained by addition of a constant)

Let 0 ≤ k0 < k1, c ∈ Λ (k0), 0 ≤ t1 < t2 and H > 0. Define

c̃ := c+H · χ(t1,t2).

Then, if H is sufficiently small, say H (t2 − t1) ≤ k1 − k0, then

k (·; k1, c̃)− k (·; k0, c) ≥ 0. (1.16)

In particular, c̃ ∈ Λ (k1).

Proof. For simplicity of notation set k1 := k (·; k1, c̃) and k0 := k (·; k0, c). It is a fact that

k1 (t)− k0 (t) = e
� t
0
q(τ)dτ (k1 − k0) ∀t ∈ [0, t1] (1.17)

k1 (t)− k0 (t) = e
� t
t1
q(τ)dτ

{
k1 (t1)− k0 (t1) +

� t

t1

e
−

� s
t1
q(τ)dτ

[c (s)− c̃ (s)] ds

}
∀t > t1,

(1.18)

where q is the (continuous) function

q (t) =


F (k1(t))−F (k0(t))

k1(t)−k0(t) if k1 (t) 6= k0 (t)

F ′ (k1 (t)) if k1 (t) = k0 (t) .

Hence by (1.17) we have

k1 (t)− k0 (t) ≥ k1 − k0 > 0 ∀t ∈ [0, t1] , (1.19)

since q ≥ 0 everywhere because F ′ ≥ 0. Assume by contradiction that (1.16) is not true; hence

t∗ := inf {t ≥ 0/k1 (t)− k0 (t) < 0} < +∞.

By continuity we have k1 (t∗)−k0 (t∗) ≤ 0 (indeed, since t∗ 6= 0, we also have k1 (t∗)−k0 (t∗) ≥ 0).

Thus relation (1.19) implies t1 < t∗.

Moreover: if t∗ ≥ t2 then k1 − k0 ≥ 0 in [0, t2] and consequently by comparison k1 − k0 ≥ 0 in
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[0,+∞), and the proof is over. If t∗ ∈ (t1, t2) then:

0 = k1 (t∗)− k0 (t∗)
(1.18)

= k1 (t1)− k0 (t1)−H
� t∗

t1

e
−

� s
t1
q(τ)dτ

ds

≥ k1 (t1)− k0 (t1)−H (t∗ − t1)
(1.19)

≥ k1 − k0 −H (t∗ − t1)

> k1 − k0 −H (t2 − t1) ≥ 0,

a contradiction.

Remark 14. Relation (1.16) can be made strict if either F ′ > 0 (as in the present case) or

H (t2 − t1) < k1 − k0. Indeed, define

t∗ := inf {t ≥ 0/k1 (t)− k0 (t) ≤ 0}

and assume t∗ < +∞. Then k1 (t∗) − k0 (t∗) = 0 and t1 < t∗. If t∗ > t2 then k1 − k0 > 0

in [0, t2] and consequently by comparison k1 − k0 > 0 in [0,+∞), which contradicts t∗ < +∞.

Then we use t∗ ∈ (t1, t2]:

0 = k1 (t∗)− k0 (t∗)
(1.18)

= k1 (t1)− k0 (t1)−H
� t∗

t1

e
−

� s
t1
q(τ)dτ

ds

≥ k1 − k0 −H
� t∗

t1

e
−

� s
t1
q(τ)dτ

ds;

then either e
−

� s
t1
q(τ)dτ

H < H for every s ∈ (t1, t
∗) (if F ′ > 0) or k1 − k0 − (t2 − t1)H > 0, and

we still reach a contradiction.

Remark 15. (Admissibility of a control whose trajectory imitates a given higher trajectory)

Let 0 < k0 < k1, c ∈ Λ (k1), and γ ∈ [0, F (k0)]. There is a natural way to construct a control

which is admissible at k0 using c. First observe that the trajectory k (·; k0, γ) is strictly increasing

and tends to +∞ at +∞, with

k̇ ≥ F (k0)− γ in [0,+∞), (1.20)

as shown in the proof of Proposition 11. Define:

T = T (k0, k1, γ) := (k (·; k0, γ))
−1

(k1) .

Hence, the control which is equal to γ in [0, T ] and for t > T behaves like c does in [0,+∞)

must be admissible at k0. Namely:

c˜ := γχ[0,T ] + c (· − T )χ(T,+∞) ∈ Λ (k0) .
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Indeed, k
(
t; k0, c˜) = k (t; k0, γ) > 0 for t ∈ [0, T ] and

d

dt
k
(
t+ T ; k0, c˜

)
= k̇

(
t+ T ; k0, c˜

)
= F

(
k
(
t+ T ; k0, c˜

))
− c (t) ;

k
(

0 + T ; k0, c˜
)

= k (T ; k0, γ) = k1

which implies k
(
·+ T ; k0, c˜) = k (·; k1, c) ≥ 0 by uniqueness.

Additionally, a simple change of variable shows that

U
(
k0; c˜) = e−ρTU (k1; c) .

Using Remarks 13 and 15, we prove two simple lower localization lemmas .

Lemma 16 (Lower localization lemma). Let k0 > 0, c ∈ Λ (k0) and ε > 0 sufficiently small and

such that:

U (k0; c) > V (k0)− ε.

Then, for every T > 0, there exists a control cT ∈ Λ (k0) and a constant m (c, ε, k0, T ) > 0 such

that

i) U (k0; cT ) > V (k0)− ε

ii) cT ≥ m (c, ε, k0, T ) a.e. in [0, T ] .

Proof. Take k0, ε and c as in the statement of the theorem. Since c is ε-optimal, we can choose

η = η (c, ε, k0) such that

e
− 2ρη
F (k0)U (k0; c) > V (k0)− ε.

Fix T > 0; Remark 13 implies:

c̃T := c+
η

T
χ[0,T ] ∈ Λ (k0 + η) .

We know by (1.20) that for every constant ξ ∈ (0, F (k0)), the trajectory k (·; k0, ξ) satisfies

k̇ (·; k0, ξ) ≥ F (k0)− ξ

and consequently tends to +∞ at +∞.

Define T (k0, η) by the formula

k

(
T (k0, η) ; k0,

F (k0)

2

)
= k0 + η;
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this implies, by Lagrange’s Theorem:

0 < T (k0, η) ≤ 2η

F (k0)
. (1.21)

Indeed, for some ξ ∈ (0, T (k0, k1)):

η = k

(
T (k0, η) ; k0,

F (k0)

2

)
− k

(
0; k0,

F (k0)

2

)
= k̇

(
ξ; k0,

F (k0)

2

)
T (k0, η)

≥ F (k0)

2
T (k0, η) .

Now define:

cT :=
F (k0)

2
χ[0,T (k0,η)] + c̃T (· − T (k0, η))χ(T (k0,η),+∞),

m (c, ε, k0, T ) :=
F (k0)

2
∧ η (c, ε, k0)

T
.

Observe that in general T > T (k0, η), and anyway we could ensure that it is so by choosing η

sufficiently small (without loss of generality), since η does not depend on T . It is a fact that:

cT ∈ Λ (k0)

cT ≥ m (c, ε, k0, T ) a.e. in [0, T ] ,

by Remark 15, since c̃T ∈ Λ(k0 + η). Furthermore:

U (k0; cT ) = u

(
F (k0)

2

) � T (k0,η)

0

e−ρtdt+

� +∞

T (k0,η)

e−ρtu (c̃T (t− T (k0, η))) dt

≥ e−ρT (k0,η)

� +∞

0

e−ρsu (c̃T (s)) ds

= e−ρT (k0,η)

{� T

0

e−ρsu
(
c (s) +

η

T

)
ds+

� +∞

T

e−ρsu (c (s)) ds

}
≥ e−ρT (k0,η)U (k0; c)

≥ e−
2ρη
F (k0)U (k0; c) > V (k0)− ε

by (1.21) and the choice of η.
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Lemma 17 (Lower uniform localization lemma). Let k0 > 0, c ∈ Λ (k0) and ε > 0 such that:

U (k0; c) > V (k0)− ε,

with ε sufficiently small. Then, for every T > 0, there exists a control cT ∈ Λ (k0) and a constant

m (ε, k0, T ) > 0 such that

i) U (k0; cT ) > V (k0)− 2ε

ii) cT ≥ m (ε, k0, T ) a.e. in [0, T ] .

Proof. Choose η = η (ε, k0) such that

e
− 2ρη
F (k0) >

V (k0)− 2ε

V (k0)− ε
> 0.

Fix T > 0 and define, like in Lemma 16:

c̃T := c+
η

T
χ[0,T ]

T (k0, η) := k

(
·; k0,

F (k0)

2

)−1

(k0 + η)

cT :=
F (k0)

2
χ[0,T (k0,η)] + c̃T (· − T (k0, η))χ(T (k0,η),+∞)

m (ε, k0, T ) :=
F (k0)

2
∧ η (ε, k0)

T
.

Obviously we still have:

cT ∈ Λ (k0)

cT ≥ m (ε, k0, T ) a.e. in [0, T ] ,

plus (1.21). The advantage here is that the constant m (ε, k0, T ) does not depend on the intial

control c. In return, we have to weaken the estimate for the value:

U (k0; cT ) ≥ e−ρT (k0,η)U (k0; c)

≥ e−
2ρη
F (k0)U (k0; c)

> e
− 2ρη
F (k0) [V (k0)− ε] > V (k0)− 2ε.
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1.3 First properties of the value function

We begin by proving some properties of the value function whose proofs do not require the

existence of an optimal control. Due to the complexity - and the novelty - of the existence result

it seems reasonable to separate these properties from others relying on optimal controls. The

latter are outlined in Section 1.6.

The first thing to do in the analysis of an optimization problem is to prove the finiteness of

the extremum we aim to reach. In other words, we need to prove that the value function takes

only finite values. The asymptotic properties of F ′ make F sub-linear: this allows us to prove

certain uniform estimates (Lemma 20) leading to the desired result. These estimates will also

reveal themselves useful both in the construction of the optimal control (as they ensure the

dominated convergence in a crucial step of the approximation) and in its the characterization

given in the Dynamic Programming section.

Remark 18. Set M0, M̂ ≥ 0 such that:

∀x ≥M0 : F (x) ≤ (L+ ε0)x

M̂ := max
[0,M0]

F.

(which is possible because limx→+∞
F (x)
x = L). Hence, for every x ≥ 0:

F (x) ≤ (L+ ε0)x+ M̂

Remark 19. Since u is a concave function satisfying u (0) = 0, u is sub-additive in [0,+∞) and

satisfies:

∀x > 0 : ∀K > 1 : u (Kx) ≤ Ku (x)

Lemma 20. Let k0 ≥ 0. There exists a number M (k0) > 1 and a continuous, strictly positive

function ψk0 : (0,+∞)→ R such that, for any c ∈ Λ (k0):

i) ∀t ≥ 0 :

� t

0

c (s) ds ≤ tM (k0)
[
1 + e(L+ε0)t

]
+
M (k0)

L+ ε0

ii) ∀t > 0 : e−ρt
� t

0

u (c (s)) ds ≤ ψk0 (t)

iii) U (c; k0) = ρ

� +∞

0

e−ρt
� t

0

u (c (s)) dsdt.

Both M (k0) and ψk0 depend only on k0 and the problem’s data (in particular they don’t depend
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on c). Moreover ψk0 satisfies

lim
t→+∞

ψk0 (t) = 0,

� +∞

0

ψk0 (t) dt < +∞

Proof. i) Set κ := k (·; k0, c) and M (k0) := 1 + max
{

(L+ ε0) k0, M̂
}

, where M̂ is the quantity

defined in Remark 18. Observe that, by Remark 18, for every x ≥ 0:

F (x) ≤ (L+ ε0)x+M (k0) .

Fix t ≥ 0; by the state equation, we have for any s ∈ [0, t]

κ (s) ≤ k0 + sM (k0) + (L+ ε0)

� s

0

κ (τ) dτ

which implies by Gronwall’s inequality:

κ (s) ≤ [k0 + sM (k0)] e(L+ε0)s ∀s ∈ [0, t] ,

as s→ k0 + sM (k0) is increasing. So

� t

0

(L+ ε0)κ (s) ds ≤ k0 (L+ ε0)

� t

0

e(L+ε0)sds+M (k0) (L+ ε0)

� t

0

s · e(L+ε0)sds

= k0e
(L+ε0)t − k0 + tM (k0) e(L+ε0)t − M (k0)

(L+ ε0)
e(L+ε0)t +

M (k0)

(L+ ε0)

= tM (k0) e(L+ε0)t +

[
k0 −

M (k0)

(L+ ε0)

]
e(L+ε0)t +

M (k0)

(L+ ε0)
− k0

≤ tM (k0) e(L+ε0)t +
M (k0)

(L+ ε0)
− k0

Hence, again by the state equation, for every t ≥ 0:

� t

0

c (s) ds = k0 − κ (t) +

� t

0

F (κ (s)) ds

≤ k0 + tM (k0) +

� t

0

(L+ ε0)κ (s) ds ≤ tM (k0)
[
1 + e(L+ε0)t

]
+

M (k0)

(L+ ε0)
.

which proves the first assertion.

ii) In the second place, it follows by Jensen inequality, the monotonicity of u and Remark 19,
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that for every t ≥ 0:

0 ≤ e−ρt
� t

0

u (c (s)) ds ≤ te−ρtu

(� t
0
c (s) ds

t

)
≤ te−ρtu

(
M (k0)

[
1 + e(L+ε0)t

]
+

M (k0)

t (L+ ε0)

)

≤ te−ρt

{
u (M (k0)) +M (k0)u

(
e(L+ε0)t

)
+ u

(
M (k0)

t (L+ ε0)

)}
=: ψk0 (t) .

This proves the inequality in ii); from the last assumption on u in (1.4) we deduce that

lim
t→+∞

ψk0 (t) = 0.

Hence limT→∞ e−ρT
� T

0
u (c (s)) ds = 0 and this implies the identity in iii) by a simple integration

by parts.

It remains to be proven that ψk0 ∈ L1 ([0,+∞)). We have:

� +∞

0

ψk0 (t) dt =

� +∞

0

te−ρt

{
u (M (k0)) +M (k0)u

(
e(L+ε0)t

)
+ u

(
M (k0)

t (L+ ε0)

)}
dt

≤ u (M (k0))

� +∞

0

te−ρtdt+M (k0)

� +∞

0

te−ρtu
(
e(L+ε0)t

)
dt

+u

(
M (k0)

L+ ε0

){� 1

0

e−ρtdt+

� +∞

1

te−ρtdt

}
.

This estimate follows again by the monotonicity of u and the concavity properties stated in

Remark 19 . By Remark 3 the upper bound is finite.

So we have established the starting point of the theory.

Corollary 21. The value function V : [0,+∞) → R is well-definite; that is, for every k0 ≥ 0,

V (k0) < +∞.

Proof. By Lemma 20 we have:

V (k0) = sup
c∈Λ(k0)

U (c; k0) ≤ ρ
� +∞

0

ψk0 (t) dt < +∞.

The next result describes the behaviour of the value function at the boundary of the domain.

39



Theorem 22. The value function V : [0,+∞)→ R satisfies:

i) lim
k→+∞

V (k) = +∞

ii) lim
k→+∞

V (k)

k
= 0

iii) lim
k→0

V (k) = V (0) = 0

Proof. i) For every k0 ≥ 0 the constant control F (k0) is admissible at k0 by Proposition 11;

hence

V (k0) ≥ U (F (k0) ; k0) =
u (F (k0))

ρ
→ +∞

as k0 → +∞, by the assumptions on u and F .

ii) Set M̂ > 0 as in Remark 18 and k0 > 0 such that:

k0 >
1

L+ ε0
M̂ (1.22)

Hence, for every x > 0:

F (x) ≤ (L+ ε0) (x+ k0) (1.23)

By reasons that will be clear later, suppose also that:

k0 >
1

L+ ε0
(1.24)

Observe that the proof of Lemma 20, i) only requires M (k0) ≥ M̂, k0 (L+ ε0); hence (1.22) and

(1.23) imply that this property holds for M (k0) = k0 (L+ ε0) - which means that:

∀t ≥ 0 :

� t

0

c (s) ds ≤ k0 + tk0 (L+ ε0)
[
1 + e(L+ε0)t

]
. (1.25)

In particular

∀t ≥ 1 :

� t
0
c (s) ds

t
≤ k0 + k0 (L+ ε0) + k0 (L+ ε0) e(L+ε0)t. (1.26)

Now set

Jc (α, β) :=

� β

α

te−ρtu

(� t
0
c (s) ds

t

)
dt (1.27)

and fix N > 0 .

We provide three different estimates, over Jc (0, 1), Jc (1, N) and Jc (N,+∞), using Remark 19.
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First, we have by (1.25):

Jc (0, 1) ≤
� 1

0

te−ρt
1

t
u

(� 1

0

c (s) ds

)
dt

≤ u
[
k0

(
1 + (L+ ε0)

(
1 + e(L+ε0)

))] 1− e−ρ

ρ

≤ u (k0)
1− e−ρ

ρ

[
1 + (L+ ε0)

(
1 + e(L+ε0)

)]
.

Moreover, by (1.26):

Jc (1, N) ≤
� N

1

te−ρtu
(
k0 + k0 (L+ ε0) + k0 (L+ ε0) e(L+ε0)t

)
dt

≤ u (k0 + k0 (L+ ε0))

� N

1

te−ρtdt+ u (k0 (L+ ε0))

� N

1

te−ρte(L+ε0)tdt

≤ u [k0 (1 + L+ ε0)]
(

1 + e(L+ε0)N
) � N

1

te−ρtdt

Finally, remembering that k0 (L+ ε0) > 1 by (1.24),

Jc (N,+∞) ≤
� +∞

N

te−ρtu
(
k0 + k0 (L+ ε0) + k0 (L+ ε0) e(L+ε0)t

)
dt

≤ u (k0 + k0 (L+ ε0))

� +∞

N

te−ρtdt+ k0 (L+ ε0)

� +∞

N

te−ρtu
(
e(L+ε0)t

)
dt

Now we show that

lim
k→+∞

V (k)

k
= 0.

Fix η > 0; by Remark 3, we can chose Nη > 0 such that

(L+ ε0)

� +∞

Nη

te−ρtu
(
e(L+ε0)t

)
dt < η.

Hence for k0 satisfying:

k0 > max

{
1

L+ ε0
M̂,

1

L+ ε0

}
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and for every c ∈ Λ (k0), the above estimates imply:

U (c; k0) = ρ

� +∞

0

e−ρt
� t

0

u (c (s)) dsdt

≤ ρJc (0, 1) + ρJc (1, Nη) + ρJc (Nη,+∞)

≤ u (k0)
(
1− e−ρ

) [
1 + (L+ ε0)

(
e(L+ε0) + 1

)]
+

+u (k0) (1 + L+ ε0)
(

1 + e(L+ε0)Nη
) � Nη

1

te−ρtdt+

+u (k0) (1 + L+ ε0)

� +∞

Nη

te−ρtdt+ k0η (1.28)

following Remark 19, Lemma 20, iii), (1.27) and Jensen inequality. Now observe that:

lim
k0→+∞

u (k0)

k0
= lim
k0→+∞

u′ (k0) = 0.

Hence for k0 sufficiently large (say k0 > k∗):

u (k0)

k0
< η

{(
1− e−ρ

) [
1 + (L+ ε0)

(
e(L+ε0) + 1

)]
+

+ (1 + L+ ε0)
(

1 + e(L+ε0)Nη
)� Nη

1

te−ρtdt+ (1 + L+ ε0)

� +∞

Nη

te−ρtdt

}−1

Observe that this is possible because the expression into the brackets does not depend on k0.

In fact, like Nη, it depends only on η and on the problem’s data L, ε0, ρ - and so does k∗.

By (1.28), this implies for every c ∈ Λ (k0):

U (c; k0) ≤ 2k0η

which gives, taking the sup over Λ (k0):

V (k0) ≤ 2k0η.

Hence the assertion is proven, because the previous inequality holds for every

k0 > max

{
1

L+ ε0
M̂,

1

L+ ε0
, k∗
}
,

and the last quantity is a threshold depending only on η and on the problem’s data.
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iii) In the first place, we prove that

V (0) = 0.

Let c ∈ Λ (0) ; by definition, c ≥ 0 so that

∀t ≥ 0 : k̇ (t; 0, c) ≤ F (k (t; 0, c)) .

Observe that F is precisely the function which defines the dynamics of k (·; 0, 0), hence by (1.5):

∀t ≥ 0 : k (t; 0, c) ≤ k (t; 0, 0) = 0

where the last equality holds by Lemma 11, i).

Hence k (·; 0, c) ≡ 0 which together with F (0) = 0 implies c ≡ 0. So Λ (0) = {0}, which implies

V (0) = U (0; 0) =

� +∞

0

e−ρtu (0) dt = 0

Now we show that

lim
k→0

V (k) = 0.

In this case we have to study the behaviour of V (k0) when k0 → 0, so we use the sublinearity

of F (x) for x→ +∞ and the concavity of F near 0.

As a first step, we construct a linear function which is always above F with these two tools.

Indeed we show that there is m > 0 such that the function

G (x) :=

mx if x ∈
[
0, k̄
]

(L+ ε0)
(
x− k̄

)
+mk̄ if x ≥ k̄

satisfies

∀x ≥ 0 : F (x) ≤ G (x) . (1.29)

If F ′
(
k̄
)
≤ L+ ε0 then it is enough to choose m > max

{
F ′ (0) , F ′

(
k̄
)
,
F(k̄)
k̄

}
.

If F ′
(
k̄
)
> L+ ε0 then take x̄ > k̄ such that F ′ ≤ L+ ε0 in (x̄,+∞); a first-order development

in x̄ with Lagrange remainder shows that

∀x > k̄ : F (x) < F (x̄) + (L+ ε0)
(
x− k̄

)
+ max

[k̄,x̄]
F.

Hence it is enough to choose m > max
{
F ′ (0) , F ′

(
k̄
)
, F (x̄)+M

k

}
(where M = max[k̄,x̄] F ) in

order that condition (1.29) is satisfied.
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Observe that condition m > F ′
(
k̄
)

is still necessary to ensure that mx > F (x) for x ∈
[
k, k̄
]

(Lagrange’s theorem proves that it is sufficient).

Suppose also, for reasons that will be clear later, that

m > 1. (1.30)

Now take k0 > 0, c ∈ Λ (k0) and consider the function h : [0,+∞) → R which is the unique

solution to the Cauchy’s problem h (0) = k0

ḣ (t) = G (h (t)) t ≥ 0

Hence, by (1.29) and (1.5), k := k (·; k0, c) ≤ h. So, setting

t̄ :=
1

m
log

(
k̄

k0

)
and k̂ := k̄ (m− L− ε0)

we get, for every t ∈ [0, t̄]:

h (t) = k0e
mt

and, for every t ≥ t̄:

h (t) = e(L+ε0)t

� t

t̄

e−(L+ε0)sk̂ds+ k̄e−(L+ε0)t̄ =
k̂e−(L+ε0)t̄

L+ ε0
e(L+ε0)t + k̄e−(L+ε0)t̄ − k̂

L+ ε0

=: ω0 (k0) e(L+ε0)t + ω1 (k0)− k̂

L+ ε0

where by definition of t̄ the functions ωi satisfy:

ω0 (k0) =
k̂

L+ ε0
e−(L+ε0)t̄ =

k̂

L+ ε0

(
k0

k

)L+ε0
m

ω1 (k0) = ke−(L+ε0)t̄ = k

(
k0

k

)L+ε0
m

.

Using the state equation, we deduce by the above computations of h two estimates for the

integrals of c.
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For every t ∈ [0, t̄] (remembering that h is increasing so that ∀s ≤ t : h (s) ≤ k̄):

� t

0

c (s) ds ≤ k0 +

� t

0

F (k (s)) ds ≤ k0 +

� t

0

G (h (s)) ds

= k0 +

� t

0

mk0e
msds = k0e

mt. (1.31)

Instead, for every t > t̄:

� t

0

c (s) ds ≤ k0 +

� t̄

0

G (h (s)) ds+

� t

t̄

G (h (s)) ds

≤ k0e
mt̄ +

� t

t̄

{
(L+ ε0)h (s) + k̂

}
ds

≤ k̄ + (t− t̄) k̂ + (L+ ε0)

� t

t̄

{
ω0 (k0) e(L+ε0)s + ω1 (k0)− k̂

L+ ε0

}
ds

≤ k̄ + ω0 (k0)
[
e(L+ε0)t − e(L+ε0)t̄

]
+ (L+ ε0) (t− t̄)ω1 (k0)

≤ k̄ + ω0 (k0) e(L+ε0)t − k̂

L+ ε0
+ (L+ ε0) (t− t̄)ω1 (k0) (1.32)

where we have used h (s) ≥ k̄ for s ∈ (t̄, t) and the fact that k0e
mt̄ = k̄.

Now observe that

lim
k0→0

ω0 (k0) = lim
k0→0

ω1 (k0) = 0

lim
k0→0

t̄ = lim
k0→0

1

m
log

(
k̄

k0

)
= +∞. (1.33)

Hence if k0 is small enough (say k0 < k∗), we may assume t̄ > 1 and ωi (k0) ≤ 1 for i = 0, 1, so

that (1.32) implies, for every t > t̄:

� t
0
c (s) ds

t
≤ k̄ + e(L+ε0)t + (L+ ε0)

(t− t̄)
t

≤ k̄ + e(L+ε0)t + (L+ ε0) (1.34)

Hence, by Lemma 20, iii) , by Remark 19, and by (1.31), (1.34), the following inequality holds
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for every k0 < k∗ and every c ∈ Λ (k0):

0 ≤ U (c; k0) = ρ

� +∞

0

e−ρt
� t

0

u (c (s)) dsdt ≤ ρ

� +∞

0

te−ρtu

(� t
0
c (s) ds

t

)
dt

≤ ρ

� 1

0

e−ρtu

(� t

0

c (s) ds

)
dt+ ρ

� t̄

1

te−ρtu

(
k0e

mt

t

)
dt+

+ρ

� +∞

t̄

te−ρtu
(
k̄ + e(L+ε0)t + (L+ ε0)

)
dt

≤ ρ

� 1

0

e−ρtu
(
k0e

mt
)

dt+ ρu

(
k0e

mt̄

t̄

) � t̄

1

te−ρtdt+

+ρu
(
k̄ + (L+ ε0)

) � +∞

t̄

te−ρtdt+ ρ

� +∞

t̄

te−ρtu
(
e(L+ε0)t

)
dt

≤ ρu (k0e
m)

� 1

0

e−ρtdt+ ρu

(
k̄

t̄

)
e−ρ (1 + ρ)

ρ2
+

+ρu
(
k̄ + (L+ ε0)

) � +∞

t̄

te−ρtdt+ ρ

� +∞

t̄

te−ρtu
(
e(L+ε0)t

)
dt

where we used also the fact that the function t → emt

t is increasing for t > 1, by condition

(1.30).

It follows from (1.33) and the fact that limx→0 u (x) = 0, together with Remark 3, that the

above quantity tends to 0 as k0 → 0; moreover, that quantity does not depend on c.

Hence, noticing that k∗ depends only on the data and m, we see that for any ε > 0 there exists

δ ∈ (0, k∗] such that for every k0 ∈ (0, δ) and for every c ∈ Λ (k0):

U (c; k0) ≤ ε,

which implies, taking the sup over Λ (k0), that V (k0) ≤ ε - and the assertion follows.

1.4 Existence of the optimal control

In this section we deal with the fundamental topic of any optimization problem: the existence

of an optimal control. For any fixed k0 ≥ 0, we look for a control c∗ ∈ Λ (k0) satisfying

U (c∗; k0) = sup
c∈Λ(k0)

U (c; k0) = V (k0) .

We preliminary observe that the peculiar features of our problem, particularly the absence of

any boundedness conditions on the admissible controls, force us to make use of this result in

proving certain regularity and monotonicity properties of the value function which usually do
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not require such a settlement - and which we postpone for this reason.

First observe that by Theorem 22, iii) if we set c0 :≡ 0, then U (c0, 0) = 0 = V (0); hence c0 is

optimal at 0.

Let k0 > 0; this will be the initial state which we will refer to during the whole section - hence

the meaning of this symbol will not change in this context.

We split the construction in various steps; first we make a simple but important

Remark 23. Suppose that (fn)n∈N , f are functions in L1
loc ([0,+∞) ,R) such that for every

N ∈ N, fn ⇀ f in L1 ([0, N ] ,R). If T > 0, T ∈ R, then it follows from the definition of weak

convergence that, for g ∈ L∞ ([0, T ] ,R):

� T

0

g (s) fn (s) ds =

� [T ]+1

0

χ[0,T ]g (s) fn (s) ds→
� [T ]+1

0

χ[0,T ]g (s) f (s) ds =

� T

0

g (s) f (s) ds.

Hence fn ⇀ f in L1 ([0, T ] ,R), for every T > 0, T ∈ R.

Step 1. The first step is to find a maximizing sequence of controls which are admissible at k0 and

a function γ ∈ L1
loc ([0,+∞) ,R), such that the sequence weakly converges to γ in L1 ([0, T ] ,R),

for every T > 0.

By definition of supremum, we can find a maximizing sequence; that is to say, there exist a

sequence (cn)n∈N ⊆ Λ (k0) of admissible controls satisfying:

lim
n→+∞

U (cn; k0) = V (k0) .

In order to apply the tools we set up at the beginning of the chapter, we need the following

result.

Lemma 24. Let T > 0 and (fn)n∈N ⊆ L1
loc ([0,+∞) ,R). Suppose that there exists a constant

M (T ) > 0 such that

‖fn‖∞,[0,T ] ≤M (T ) ∀n ∈ N.

Then there exist a subsequence
(
fn
)
n∈N of (fn)n∈N and a function f ∈ L1 ([0, T ] ,R) such that

fn ⇀ f in L1 ([0, T ] ,R) .

Proof. For every 0 ≤ t0 < t1 ≤ T :

� t1

t0

|fn (s)|ds ≤ ‖fn‖∞,[0,T ] · (t1 − t0) ≤M (T ) · (t1 − t0) .

Hence, by the fact that the family {(t0, t1) ∈ P ([0, T ]) /t0, t1 ∈ [0, T ]} generates the Borel σ-
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algebra in [0, T ], and by the regularity property of the Lebesgue measure, it is easy to verify

that the latter relation holds for every measurable set E ⊆ [0, T ]; that is to say

�
E

|fn (s)|ds ≤M (T ) · µ (E) .

This easily implies that the densities {dn/n ∈ N} given by dn (E) :=
�
E
fn (s) ds are absolutely

equicontinuous. So the thesis follows from the Dunford-Pettis criterion. Observe that the

additional requirement that for any ε > 0 there exists a compact set Kε ⊆ [0, T ] such that

�
[0,T ]\Kε

|fn (s)|ds ≤ ε ∀n ∈ N

is obviously satisfied.

Now we apply Lemma 9 to (cn)n∈N in order to find a new sequence
(
c1n
)
n∈N ⊆ Λ (k0) such that,

for every n ∈ N:

U
(
c1n; k0

)
≥ U (cn; k0)

c1n = cn ∧N (k0, 1) a.e. in [0, 1] .

In particular
(
c1n
)
n∈N ⊆ L1

loc ([0,+∞) ,R) and
∥∥c1n∥∥∞,[0,1]

≤ N (k0, 1) for every n ∈ N. Hence

by Lemma 24, there exists a sequence
(
c1n
)
n∈N extracted from

(
c1n
)
n∈N and a function c1 ∈

L1 ([0, 1] ,R) such that

c1n ⇀ c1 in L1 ([0, 1] ,R) .

Now define, for every n ∈ N:

c2n :=
(
c1n
)2

where
(
c1n
)2

is understood with the notation of Lemma 9.

Hence for every n ∈ N:

U
(
c2n; k0

)
≥ U

(
c1n; k0

)
c2n = c1n ∧N (k0, 2) a.e. in [0, 2] .

Again by Lemma 24, we can exhibit a subsequence
(
c2n
)
n∈N of

(
c2n
)
n∈N and a function c2 ∈

L1 ([0, 2] ,R) such that

c2n ⇀ c2 in L1 ([0, 2] ,R) .

Following this pattern we are able to give a recursive definition of a family{((
cTn
)
n∈N ,

(
cTn
)
n∈N , c

T
)
/T ∈ N

}
and a family of sequences of indices {σT (·) : N→ N/T ∈ N}
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satisfying, for every T, n ∈ N:

σT (·) is strictly increasing and σT (n) ≥ n

cTn ∈ Λ (k0) , cTn = cTσT (n)

U
(
cT+1
n ; k0

)
≥ U

(
cTn ; k0

)
cT+1
n = cTn ∧N (k0, T + 1) a.e. in [0, T + 1]

cTn ⇀ cT in L1 ([0, T ] ,R) (1.35)

Now fix T ∈ N. The above relations clearly imply that for every n ∈ N there exist sets

UTn , V
T
n ⊆ [0, T ] such that µ

(
[0, T ] \ UTn

)
= µ

(
[0, T ] \ V Tn

)
= 0 and

cT+1
n = cT+1

σT+1(n) = cTσT+1(n) ∧N (k0, T + 1) in UTn

cTσT+1(n) = cTσT ◦σT+1(n) ≤ N (k0, T ) in V Tn

By the monotonicity of the function N (·, ·) in the second variable (Lemma 9) we obtain

cT+1
n = cTσT+1(n) in WT

n := UTn ∩ V Tn . (1.36)

Hence
(
cT+1
n

)
n

coincides, as a sequence, with
(
cTσT+1(n)

)
n

in
⋂
nW

T
n - that is to say almost

everywhere in [0, T ]. By the properties of σT+1 in (1.35), the latter is a subsequence of
(
cTn
)
n
.

By the essential uniqueness of the weak limit in L1 ([0, T ]) we have:

cT+1 = cT almost everywhere in [0, T ] . (1.37)

It remains to be constructed a maximizing sequence (γn)n∈N ⊆ Λ (k0) and a function γ ∈
L1
loc ([0,+∞) ,R) such that

γn ⇀ γ in L1 ([0, T ] ,R) ∀T > 0.

Definition 25. i) γ : [0,+∞)→ R is the function

γ (t) := c[t]+1 (t) ∀t ≥ 0

ii) ∀n ∈ N: γn := cnn.

Now, if we consider (for any fixed T ∈ N), the restriction to [0, T ] of the sequence γT , γT+1, γT+2, ..

we see that there exists a subset of [0, T ], with negligible complementary, in which such sequence

coincides with a subsequence of
(
cTn
)
n
. Indeed, by computations similar to those carried out
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after Remark 1.36 we find that:

γT = cTT

γT+1 = cTσT+1(T+1) in WT
T+1

γT+2 = cTσT+1◦σT+2(T+2) in WT+1
T+2 ∩W

T
σT+2(T+2) ∩ [0, T ]

. . .

Any of these sets almost coincides with [0, T ] (and so does the intersection); moreover by the

properties of the σn’s we have T < σT+1 (T + 1) < σT+1 ◦ σT+2 (T + 2).

Now we can state the following

Proposition 26. Let (γn)n∈N, γ as in Definition 25. Then (γn)n∈N ⊆ Λ (k0), γ ∈ L1
loc ([0,+∞) ,R)

and

lim
n→+∞

U (γn; k0) = V (k0) .

Moreover, for every T ∈ N, (γn)n≥T , as a sequence, coincides almost everywhere in [0, T ] with

a subsequence of
(
cTn
)
n∈N. Consequently

‖γn‖∞,[0,T ] ≤ N (k0, T ) ∀T, n ∈ N, n ≥ T,

γn ⇀ γ in L1 ([0, T ] ,R) ∀T > 0, T ∈ R.

Proof. By definition 25 and by the second condition in (1.35), γn = cnσn(n) ∈ Λ (k0).

Moreover, for every T ∈ N, γ = cT almost everywhere in [0, T ]; hence γ ∈ L1 ([0, T ] ,R), which

implies γ ∈ L1
loc ([0,+∞) ,R) because T is generic.

Now fix n ∈ N. The above equality for γn cannot be developed in [0,+∞), but the second and

third condition in (1.35) imply that the following chain of inequalities for the functional holds:

U (γn; k0) ≥ U
(
cn−1
σn(n); k0

)
= U

(
cn−1
σn−1◦σn(n); k0

)
≥ U

(
cn−2
σn−1◦σn(n); k0

)
≥ · · · ≥ U

(
c1σ2◦···◦σn(n); k0

)
= U

(
c1σ1◦σ2◦···◦σn(n); k0

)
≥ U

(
cσ1◦σ2◦···◦σn(n); k0

)
.

Thus

|U (γn; k0)− V (k0)| = V (k0)− U (γn; k0)

≤ V (k0)− U
(
cσ1◦σ2◦···◦σn(n); k0

)
=

∣∣U (cσ1◦σ2◦···◦σn(n); k0

)
− V (k0)

∣∣ ;
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since σ1 ◦ · · · ◦ σn (n) ≥ n, the fact that (γn)n∈N is a maximizing sequence follows from the fact

that, by assumption, (cn)n∈N is a maximizing sequence.

Now fix T ∈ N and observe that the argument developed after Definition 25 inductively shows

that, for every k ∈ N:

γT+k = cTνT (k) (where νT (k) = σT+1 ◦ · · · ◦ σT+k (T + k))

in [0, T ] ∩WT+k−1
T+k ∩

k−1⋂
p=1

WT+k−1−p⊙p−1
j=0 σT+k−(p−1−j)

(1.38)

Since by construction any set of the form [0, T ] \WT+k−1−p
m , p = 0, .., k − 1 has null Lebesgue

measure, the above relation imply ‖γT+k‖∞,[0,T ] =
∥∥∥cTνT (k)

∥∥∥
∞,[0,T ]

. This quantity is bounded

above by N (k0, T ), by the second and fourth condition in (1.35).

Moreover, the intersection for k ∈ N of the sets in (1.38) has negligible complementary in

[0, T ]; since νT is strictly increasing, this implies that (γn)n≥T , as a sequence, coincides almost

everywhere in [0, T ] with a subsequence of
(
cTn
)
n∈N. In particular γn ⇀ γ in L1 ([0, T ] ,R) by

the last condition in (1.35) and by the fact that γ = cT almost everywhere in [0, T ].

As this holds for every T ∈ N, it is a consequence of Remark 23 that it must hold for every real

number T > 0.

The first step is then accomplished.

Step 2. The next step is to show that γ is admissible at k0. For this purpose, it is enough to

prove the following

Proposition 27. Let T > 0. Hence γ ≥ 0 almost everywhere in [0, T ], and, for every t ∈ [0, T ],

k (t; k0, γ) ≥ 0.

Proof. It is well known that the weak convergence of (γn)n∈N to γ in L1 ([0, T ] ,R), ensured by

Proposition 26, implies that

lim inf
n→+∞

γn (t) ≤ γ (t) ≤ lim sup
n→+∞

γn (t) for almost every t ∈ [0, T ] . (1.39)

By proposition 26 we also have

∀n ∈ N : for almost every t ∈ [0, T ] : 0 ≤ γn (t) ≤ N (k0, T ) . (1.40)

We can interchange the quantifiers in the previous relation, since a numerable intersection of

full-measure sets is a full-measure set. Consequently, taking the intersection with the set where
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(1.39) holds, we have

0 ≤ γ ≤ N (k0, T ) a.e. in [0, T ]

k (·; k0, 0) ≥ κ ≥ k (·; k0, N (k0, T )) in [0, T ]

k (·; k0, 0) ≥ κn ≥ k (·; k0, N (k0, T )) in [0, T ] , ∀n ∈ N

where κ := k (·; k0, γ) and κn := k (·; k0, γn); observe that the constant control N (k0, T ) need

not be admissible. The second relation follows from the first by Remark 5 and the third relation

follows directly from (1.40). Hence:

|κ− κn| ≤ k (·; k0, 0)− k (·; k0, N (k0, T )) in [0, T ] , ∀n ∈ N. (1.41)

Fix n ∈ N. Subtracting the state equation for κ from the state equation for κn, we obtain, for

every t ∈ [0, T ]:

κ̇n (t)− κ̇ (t) = F (κn (t))− F (κ (t))− [γn (t)− γ (t)] = hn (t) [κn (t)− κ (t)]− [γn (t)− γ (t)] ,

where hn is the (continuous) function defined taking k1 = κn and k2 = κ in Remark 5.

Integrating both sides of this equation between 0 and t, then taking absolute values leads to:

|κn (t)− κ (t)| ≤
� t

0
|hn (s)| |κn (s)− κ (s)|ds +

∣∣∣∣� t

0

[γ (s)− γn (s)] ds

∣∣∣∣ . (1.42)

Observe that, for every s ∈ [0, t]:

|hn (s)| |κn (s)− κ (s)| ≤ M [k (s; k0, 0)− k (s; k0, N (k0, T ))] ,

by Remark 7 and by (1.41).

This holds for every n ∈ N and for every fixed t ∈ [0, T ]. Since the function of s on the right

hand side obviously belongs to L1 ([0, t]) we obtain from (2.44) (remembering that γn ⇀ γ in

L1 ([0, t])):

lim sup
n→+∞

|κn (t)− κ (t)| ≤ lim sup
n→+∞

� t

0

|hn (s)| |κn (s)− κ (s)|ds

≤
� t

0

lim sup
n→+∞

|hn (s)| |κn (s)− κ (s)|ds (1.43)

≤
� t

0

M lim sup
n→+∞

|κn (s)− κ (s)|ds.
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Hence by Gronwall’s inequality:

lim sup
n→+∞

|κn (t)− κ (t)| = 0,

for every t ∈ [0, T ]. This is equivalent to

lim
n→+∞

κn = κ in [0, T ] .

Since any κn is non-negative in [0, T ], the second assertion of the theorem is also proved.

Remark 28. The argument behind (1.43) goes as follows. Let

an := sup
j≥n
|hj | |κj − κ| .

Then

|an| = an ≤M [k (·; k0, 0)− k (·; k0, N (k0, T ))] ∀n ∈ N

an ↓n→+∞ lim sup
m→+∞

|hm| |κm − κ| in [0, t] .

Then by Dominated Convergence:

inf
n∈N

� t

0

an (s) ds =

� t

0

lim sup
m→+∞

|hm (s)| |κm (s)− κ (s)|ds.

Moreover for every n ∈ N and every i ≥ n:

an = sup
j≥n
|hj | |κj − κ| ≥ |hi| |κi − κ| ,

which implies, passing to the integrals and then taking the sup for i ≥ n:

� t

0

an (s) ds ≥ sup
i≥n

� t

0

|hi (s)| |κi (s)− κ (s)|ds ∀n ∈ N.

Hence, passing to the inf for n ∈ N:

inf
n∈N

� t

0

an (s) ds ≥ lim sup
m→+∞

� t

0

|hm (s)| |κm (s)− κ (s)|ds.

As a consequence of Proposition 27, γ is almost everywhere non-negative in [0,+∞) and

k (·; k0, γ) is everywhere non-negative in [0,+∞) - which precisely means that γ ∈ Λ (k0). Hence

the second step is also ended.
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Step 3. Now we are going to define the control which is optimal at k0. In order to do

this, we need to extract a subsequence from (γn)n∈N because the weak convergence to γ in

the intervals could not be enough to ensure that limn→+∞ U (γn; k0) = U (γ; k0); we will also

need the admissibility of γ. By the penultimate assertion stated in Proposition 26, and by the

monotonicity of u, we have:

‖u (γn)‖∞,[0,1] ≤ u (N (k0, 1)) ∀n ∈ N.

Hence by Lemma 24, there exists a function f1 ∈ L1 ([0, 1] ,R) and a sequence (u (γ1,n))n∈N
extracted from (u (γn))n∈N, such that

u (γ1,n) ⇀ f1 in L1 ([0, 1] ,R) .

Again by Proposition 26 and the monotonicity of u,

‖u (γ1,n)‖∞,[0,2] ≤ u (N (k0, 2)) ∀n ∈ N

which implies by Lemma 24 the existence of f2 ∈ L1 ([0, 2] ,R) and of a sequence (u (γ2,n))n∈N
extracted from (u (γ1,n))n∈N such that

u (γ2,n) ⇀ f2 in L1 ([0, 2] ,R) ;

in particular f2 = f1 almost everywhere in [0, 1] by the essential uniqueness of the weak limit.

Going on this way we see that there exists a family
{(
u (γT,n)n∈N , f

T
)
/T ∈ N

}
satisfying, for

every T ∈ N:

‖u (γT,n)‖∞,[0,T ] ≤ u (N (k0, T )) ∀n ∈ N

(u (γT+1,n))n∈N is extracted from (u (γT,n))n∈N

fT+1 = fT almost everywhere in [0, T ]

u (γT,n) ⇀ fT in L1 ([0, T ] ,R) .

Hence, for every T ∈ N, the sequence (u (γn,n))n≥T is extracted from (u (γT,n))n∈N . If we define

f (t) := f [t]+1 (t), then f = fT almost everywhere in [0, T ]. So

u (γn,n) ⇀ f in L1 ([0, T ] ,R) ∀T > 0. (1.44)
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by construction and by Remark 23. This implies that

0 ≤ lim inf
n→+∞

u (γn,n (t)) ≤ f (t)

for almost every t ∈ R.

Now define c∗ : [0,+∞)→ R as

c∗ (t) :=

u−1 (f (t)) if f (t) ≥ 0

0 if f (t) < 0.

Obviously c∗ ≥ 0 everywhere in [0,+∞). Moreover, again by the properties of the weak conver-

gence, for any T ∈ N and for almost every t ∈ [0, T ]:

f (t) ≤ lim sup
n→+∞

u (γn,n (t)) ≤ u (N (k0, T )) .

This implies, together with the fact that u−1 is increasing, that c∗ is bounded above by N (k0, T )

almost everywhere in [0, T ]. As this holds for every T ∈ N,

c∗ ∈ L∞loc ([0,+∞) ,R) . (1.45)

To complete the proof of the admissibility of c∗, we show that c∗ ≤ γ almost everywhere in

[0,+∞).

Fix T > 0 and let t0 ∈ [0, T ] be a Lebesgue point for both f and γ in [0, T ]; then take t1 ∈ (t0, T ).

By the concavity of u and by Jensen inequality:

� t1
t0
u (γn,n (s)) ds

t1 − t0
≤ u

(� t1
t0
γn,n (s) ds

t1 − t0

)
(1.46)

Observe that (γn,n)n≥1 is a subsequence of (γ1,n)n∈N, which is in its turn extracted from (γn)n∈N.

Hence γn,n ⇀ γ in L1 ([0, T ] ,R), which implies limn→+∞
� t1
t0
γn,n (s) ds =

� t1
t0
γ (s) ds. So taking

the limit for n→ +∞ in (1.46), by the continuity of u and by (1.44), we have:

� t1
t0
f (s) ds

t1 − t0
≤ u

(� t1
t0
γ (s) ds

t1 − t0

)
.

As t0 is a Lebesgue point for both f and γ in [0, T ], we can take the limit for t1 → t0 in the

previous inequality and get f (t0) ≤ u (γ (t0)).

By the Lebesgue Point Theorem, this argument works for almost every t0 ∈ [0, T ]. So by the
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monotonicity of u−1 we deduce

c∗ ≤ γ almost everywhere in [0, T ] .

Because T is generic, we have by (1.5): k (t; k0, c
∗) ≥ k (t; k0, γ) for every t ∈ R. Hence by

the admissibility of γ at k0, k (·; k0, c
∗) ≥ 0. This implies, together with (1.45) and c∗ ≥ 0 in

[0,+∞),

c∗ ∈ Λ (k0) .

Finally, observe that by Lemma 20 we can apply the Dominated Convergence Theorem to the

functions t→ e−ρt
� t

0
u (γn,n (s)) ds, n ∈ N.

Hence, using the functional form established in the same Lemma, part iii), by Proposition 26,

by the fact that (γn,n)n∈N is extracted from (γn)n∈N, and by (1.44):

V (k0) = lim
n→+∞

U (γn; k0) = lim
n→+∞

U (γn,n; k0)

= lim
n→+∞

ρ

� +∞

0

e−ρt
� t

0

u (γn,n (s)) dsdt

= ρ

� +∞

0

e−ρt lim sup
n→+∞

� t

0

u (γn,n (s)) dsdt

= ρ

� +∞

0

e−ρt
� t

0

f (s) dsdt

= ρ

� +∞

0

e−ρt
� t

0

u (c∗ (s)) dsdt = U (c∗; k0) .

So we have proved the following

Theorem 29. For every k0 ≥ 0 there exists c∗ ∈ Λ (k0) which is optimal at k0 and everywhere

non-negative in [0,+∞), satisfying:

c∗ ∈ L∞loc ([0,+∞) ,R) .

1.5 Lower bounds for optimal strategies

Theorem 29 provides a local upper bound for optimal controls, which can be considered inde-

pendent of the control itself pursuant to Lemma 9. In the present section we prove that both

optimal controls and optimal trajectories are striclty positive, for the non-trivial case k0 > 0.
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Lemma 30. The function g : (0,+∞)→ (0,+∞) defined in Lemma 6 satisfies:

lim
x→0

g (x) = +∞.

Consequently, g is surjective.

Proof. First we remind that

g (x) := min {y ≥ 0/ (x, y) ∈ Ku′} , where

Ku′ =
⋂{

K ⊆ R2/K is closed and convex and K ⊇ SupGraph (u′)
}
.

We have already proved that g is convex (hence, continuous), strictly positive and strictly de-

creasing. Furthermore, g (x)→ 0 as x→ +∞ since g ≤ u′. Hence, the property limx→0 g (x) =

+∞ will imply that g is surjective.

Let M > 0 and take ε > 0 such that u′ (ε) > M and

ε
u′ (ε)

u′ (ε)−M
< (u′)

−1
(M) .

Then define

f (x) :=


M−u′(ε)

ε (x− ε) +M if x ∈
[
0, ε u′(ε)

u′(ε)−M

]
0 if x ≥ ε u′(ε)

u′(ε)−M .

Then u′ ≥ f , since x ≤ ε u′(ε)
u′(ε)−M implies u′ (x) > M and

u′ (x) ≥ f (x) ⇐⇒ (u′ (x)−M) ε ≥ (u′ (ε)−M) (ε− x) .

This means that

SupGraph (u′) ⊆ SupGraph (f) ,

and obviously SupGraph (f) is a convex set. Hence Ku′ ⊆ SupGraph (f). Since (ε, g (ε)) ∈ Ku′

we have g (ε) ≥ f (ε) = M . Since g is decreasing, we have

g−1 ([M,+∞)) ⊇ (0, ε) .
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Proposition 31. Let k0 > 0 and c∗ ∈ Λ (k0) optimal at k0. Then

c∗(t) ≥ g−1

(
ρeρt

V (k0 + 1)

F (k0)

)
for a.e. t ≥ 0,

where g : (0,+∞)→ (0,+∞) is the strictly decreasing function in Lemmas 6 and 30.

Furthermore, the optimal trajectory k (·; k0, c
∗) is strictly positive in [0,+∞) and, if the minimum

value for an interval [0, T ] is attained in [0, T ) then:

k (t; k0, c
∗) ≥ (g ◦ F )

−1

(
ρeρT

V (k0 + 1)

F (k0)

)
∀t ∈ [0, T ] .

In particular, for every T > 0 there exists µ(T ) > 0 such that c∗ ≥ µ(T ) almost everywhere in

[0, T ] and k(·; k0, c
∗) ≥ µ(T ) in [0, T ].

Proof. Fix k0 > 0, c∗ ∈ Λ (k0) and optimal, 0 ≤ t1 < t2 ≤ T .

We prove a lower T−estimate for
� t2
t1
c∗ (t) dt, using the incremental ratios of V .

Fix k1 > k0 and define

c̃ := c∗ +H · χ(t1,t2), H =
k1 − k0

t2 − t1
.

Then c̃ ∈ Λ (k1) by Remark (13). By the concavity of u:

V (k1)− V (k0) ≥ U (k1; c̃)− U (k0; c∗)

=

� t2

t1

e−ρt [u (c̃ (t))− u (c∗ (t))] dt

≥H
� t2

t1

e−ρtu′ (c̃ (t)) dt

≥He−ρt2
� t2

t1

g (c̃ (t)) dt.

Hence by Jensen’s inequality:

V (k1)− V (k0) ≥ He−ρt2 (t2 − t1) g

( t2

t1

c̃ (t) dt

)
= He−ρt2 (t2 − t1) g

( t2

t1

c∗ (t) dt +H

)
= (k1 − k0) e−ρt2g

( t2

t1

c∗ (t) dt +
k1 − k0

t2 − t1

)
⇐⇒

V (k1)− V (k0)

k1 − k0
eρt2 ≥ g

( t2

t1

c∗ (t) dt +
k1 − k0

t2 − t1

)
. (1.47)
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Now take γ∗ ∈ Λ (k1) and optimal, and γ˜ ∈ Λ (k0) like in Remark (15). Namely:

γ˜ := 0χ[0,T (k0,k1)] + γ∗ (· − T (k0, k1))χ(T (k0,k1),+∞);

we recall that k (T (k0, k1) ; k0, 0) = k1. Hence

V (k1)− V (k0) ≤ U (k1; γ∗)− U
(
k0; γ˜

)
= U (k1; γ∗)

(
1− e−ρT (k0,k1)

)
≤ ρV (k1)T (k0, k1)

≤ ρV (k1)
k1 − k0

F (k0)
. (1.48)

(Observe that the relation T (k0, k1) ≤ (k1 − k0) /F (k0) is a consequence of Lagrange’s Theo-

rem). Putting together (1.47) and (1.48) we obtain, for every k1 > k0 > 0:

g

( t2

t1

c∗ (t) dt +
k1 − k0

t2 − t1

)
≤ V (k1)− V (k0)

k1 − k0
eρt2 ≤ ρeρt2 V (k1)

F (k0)
.

Better, since V is (strictly) increasing:

g

( t2

t1

c∗ (t) dt +
k1 − k0

t2 − t1

)
≤ ρeρt2 V (k0 + 1)

F (k0)
∀k1 ∈ (k0, k0 + 1) .

Note that the quantity at the right hand side is strictly positive by the properties of F and V ;

moreover, the function g : (0,+∞)→ (0,+∞) is a bijection. Hence we can invert the relation,

thus obtaining:

 t2

t1

c∗ (t) dt +
k1 − k0

t2 − t1
≥ g−1

(
ρeρt2

V (k0 + 1)

F (k0)

)
∀k1 ∈ (k0, k0 + 1) ,

which implies

 t2

t1

c∗ (t) dt ≥ g−1

(
ρeρt2

V (k0 + 1)

F (k0)

)
≥ g−1

(
ρeρT

V (k0 + 1)

F (k0)

)
> 0

Due to Lebesgue Point Theorem, we can assume up to a zero measure set that t1 is a Lebesgue
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point for c∗ in [0, T ], and we deduce:

c∗ ≥ g−1

(
ρeρT

V (k0 + 1)

F (k0)

)
a.e. in [0, T ] ,

passing to the limit in the weaker estimate.

Since g is continuous, we actually deduce the pointwise estimate:

c∗ (t) ≥ g−1

(
ρeρt

V (k0 + 1)

F (k0)

)
for a.e. t ≥ 0.

We an additional simple “derivative-integral-derivative” argument, we deduce that an analogous

property holds for k∗ = k (·; k0, c
∗).

Let t0 be a point of minimum of k∗ in [0, T ]. If t0 < T we have, for every t ∈ (t0, T ] we have:

0 ≤ k∗ (t)− k∗ (t0)

t− t0
=

 t

t0

[F (k∗ (s))− c∗ (s)] ds

≤
 t

t0

F (k∗ (s)) ds− g−1

(
ρeρT

V (k0 + 1)

F (k0)

)
.

Passing to the limit for t→ t+0 :

g−1

(
ρeρT

V (k0 + 1)

F (k0)

)
≤ F (k∗ (t0))

=⇒ k∗ (t0) ≥ (g ◦ F )
−1

(
ρeρT

V (k0 + 1)

F (k0)

)
> 0.

If t0 = T then only two cases are possible: T is a point of minimum for k∗ also in [0, T + 1], or

k∗ (T ) > k∗ (T + ε) ≥ 0 for some ε ∈ (0, 1). In the first case, we obtain

k∗ (T ) ≥ (g ◦ F )
−1

(
ρeρ(T+1)V (k0 + 1)

F (k0)

)
;

the minimum value k∗ (t0) is strictly positive, anyway.

1.6 Further properties of the value function: regularity

and monotonicity

Now it is possible to establish some regularity and monotonicity properties of the value function,

with the help of optimal controls. The next theorem uses the monotonicity with respect to the

first variable of the function defined in Lemma 9.
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Theorem 32. The value function V : [0,+∞)→ R satisfies:

i) V is strictly increasing in [0,+∞).

ii) For every k0 > 0, there exists C (k0) , δ > 0 such that for every h ∈ (−δ, δ):

V (k0 + h)− V (k0)

h
≥ C (k0)

iii) V is Lipschitz-continuous in every closed sub-interval of (0,+∞).

Proof. i) Let 0 < k1. Set c ∈ (0, F (k1)] and c1 ≡ c in [0,+∞); hence by Proposition 11 and by

Theorem 22,

V (0) = 0 <
u (c)

ρ
= U (c1; k1) ≤ V (k1) .

The implication 0 < k0 < k1 =⇒ V (k0) < V (k1) follows from point ii).

ii) We split the proof in two parts.

First, take k0, h > 0, c optimal at k0 and set k1 := k0 + h. Because k1 > k0 we can choose

ck1−k0 = ch ∈ Λ (k0 + h) as in Lemma 10. Hence

V (k0 + h)− V (k0) ≥ U
(
ch; k0 + h

)
− U (c; k0) ≥ u′ (N (k0, h) + 1)

� h

0

e−ρtdt

Now, by the fact that limh→0
1
h

� h
0
e−ρtdt = 1 and that N (k0, ·) is increasing, there exists δ > 0

such that, for any h ∈ (0, δ):

V (k0 + h)− V (k0)

h
≥ u′ (N (k0, h) + 1)

� h
0
e−ρtdt

h
≥ u′ (N (k0, 1) + 1)

2
=: C (k0)

Now fix k0 > 0, h < 0 and c optimal at k0 + h.

Then again take ck0−(k0+h) = c−h ∈ Λ (k0) as in Lemma 10. Hence

V (k0 + h)− V (k0) ≤ U (c; k0 + h)− U
(
c−h; k0

)
≤ −u′ (N (k0 + h,−h) + 1)

� −h
0

e−ρtdt.

We can assume that − 1
h

� −h
0

e−ρtdt ≥ 1
2 for −δ < h < 0. Hence, by the monotonicity of N (·, ·)

in both variables, for every h ∈ (−δ, 0):

V (k0 + h)− V (k0)

h
≥ u′ (N (k0 + h,−h) + 1)

2
≥ u′ (N (k0, 1) + 1)

2
= C (k0) .

iii) Let 0 < k0 < k1. We need a reverse inequality for V (k1) − V (k0), so take c1 ∈ Λ (k1)
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optimal at k1. In order to define the proper c0 ∈ Λ (k0), observe that the orbit k = k (·; k0, 0)

(with null control) satisfies k̇ = F (k). With an argument similar to the one used in Proposition

11 we can see that k̇ (t) > F (k0) > 0 for every t > 0, and so limt→+∞ k (t) = +∞.

Then by Darboux’s property there exists t̄ > 0 such that k (t̄) = k1. Observe that, since k and F

are strictly increasing functions, k̇ must also be strictly increasing. Hence applying Lagrange’s

theorem to k gives for some ξ ∈ (0, t̄):

k1 − k0 = k (t̄)− k (0) = t̄ · k̇ (ξ) > t̄k̇ (0) = t̄F (k0) (1.49)

Now define

c0 (t) :=

0 if t ∈ [0, t̄]

c1 (t− t̄) if t > t̄

It is easy to check that c0 ∈ Λ (k0), because

k (t; k0, c0) = k (t; k0, 0) > 0 ∀t ∈ [0, t̄]

k (t+ t̄; k0, c0) = k (t; k1, c1) ≥ 0 ∀t ≥ 0

by the uniqueness of the orbit; as far as the second equality is concerned, observe that both

orbits pass through (0, k1) and satisfy the differential equation controlled with c1 for t > 0.

Hence by (1.49):

V (k1)− V (k0) ≤ U (c1; k1)− U (c0; k0) =

� +∞

0

e−ρt [u (c1 (t))− u (c0 (t))] dt

=

� +∞

0

e−ρtu (c1 (t)) dt−
� +∞

t̄

e−ρtu (c1 (t− t̄)) dt

=

� +∞

0

e−ρtu (c1 (t)) dt−
� +∞

0

e−ρ(s+t̄)u (c1 (s)) ds

=
(

1− e−ρt̄
)
U (c1; k1) =

(
1− e−ρt̄

)
V (k1) ≤ ρt̄V (k1) < ρV (k1)

k1 − k0

F (k0)

So by the monotonicity of V and F we have, for a ≤ k0 < k1 ≤ b:

V (k1)− V (k0) ≤ ρV (b)

F (a)
(k1 − k0) .
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1.7 Dynamic Programming

1.7.1 Dynamic Programming Principle and characterization of opti-

mal controls

In this section we study the properties of the value function as a solution to Bellman and

Hamilton-Jacobi-Bellman equations.

First observe that we can translate an orbit by translating the control, according to the next

remark.

Remark 33 (Translation of the orbit). For every k0, τ ≥ 0 and every c ∈ L1
loc[(0,+∞) ,R):

k (·; k (τ ; k0, c) , c (·+ τ)) = k (·+ τ ; k0, c)

by the uniqueness of the orbit. In particular, if c ∈ Λ (k0) then c (·+ τ) ∈ Λ (k (τ ; k0, c)).

The first step consists in proving a suitable version of Dynamic Programming Principle.

Theorem 34. For every τ > 0, the value function V : [0,+∞) → R satisfies the following

functional equation:

∀k0 ≥ 0 : v (k0) = sup
c∈Λ(k0)

{� τ

0

e−ρtu (c (t)) dt+ e−ρτv (k (τ ; k0, c))

}
(1.50)

in the unknown v : [0,+∞)→ R.

Proof. Fix τ > 0 and k0 ≥ 0, and set

σ (τ, k0) := sup
c∈Λ(k0)

{� τ

0

e−ρtu (c (t)) dt+ e−ρτV (k (τ ; k0, c))

}
.

We prove that

σ (τ, k0) = sup
c∈Λ(k0)

U (c; k0) .

In the first place, we show that σ (τ, k0) is an upper bound of {U (c; k0) / c ∈ Λ (k0)}.
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Fix c ∈ Λ (k0); then by Remark 33 c (·+ τ) ∈ Λ (k (τ ; k0, c)); hence

σ (τ, k0) ≥
� τ

0

e−ρtu (c (t)) dt+ e−ρτV (k (τ ; k0, c))

≥
� τ

0

e−ρtu (c (t)) dt+ e−ρτU (c (·+ τ) ; k (τ ; k0, c))

=

� τ

0

e−ρtu (c (t)) dt+

� +∞

0

e−ρ(t+τ)u (c (t+ τ)) dt

=

� τ

0

e−ρtu (c (t)) dt+

� +∞

τ

e−ρsu (c (s)) ds = U (c; k0)

Secondly, fix ε > 0, and take

0 < ε′ ≤ 2ε

(1 + e−ρτ )
.

Hence there exists c̃ε ∈ Λ (k0) and ˜̃cε ∈ Λ (k (τ ; k0, c̃ε)) such that

σ (τ, k0)− ε ≤ σ (τ, k0)− ε′

2

(
1 + e−ρτ

)
≤

� τ

0

e−ρtu (c̃ε (t)) dt+ e−ρτV (k (τ ; k0, c̃ε))− e−ρτ
ε′

2

≤
� τ

0

e−ρtu (c̃ε (t)) dt+ e−ρτU
(
˜̃cε; k (τ ; k0, c̃ε)

)
=

� τ

0

e−ρtu (c̃ε (t)) dt+

� +∞

0

e−ρ(t+τ)u
(
˜̃cε (t)

)
dt

Now set

cε (t) :=

c̃ε (t) if t ∈ [0, τ ]

˜̃cε (t− τ) if t > τ

Hence cε ∈ L1
loc ([0,+∞) ,R) and ∀t > 0 : cε (t+ τ) = ˜̃cε (t). So:

σ (τ, k0)− ε ≤
� +∞

0

e−ρtu (cε (t)) dt (1.51)

Finally, it is easy to show that cε ∈ Λ (k0). Observe that k (·; k0, cε) = k (·; k0, c̃ε) in [0, τ ] by

definition of cε and by uniqueness. In particular k (τ ; k0, cε) = k (τ ; k0, c̃ε), so that k (·+ τ ; k0, cε)

and k
(
·; k (τ ; k0, c̃ε) , ˜̃cε

)
have the same initial value; moreover, these two orbits satisfy the same

state equation (i.e. the equation associated with the control cε (·+ τ)) and so they coincide,

again by uniqueness. Recalling that by definition c̃ε ∈ Λ (k0) and ˜̃cε ∈ Λ (k (τ ; k0, c̃ε)), we have

k (t; k0, cε) ≥ 0 for all t ≥ 0. Hence by (1.51) we can write

σ (τ, k0)− ε ≤ U (cε; k0)
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and the assertion is proven.

Equation (1.50) is called Bellman Functional Equation.

A consequence of the above theorem is that every control which is optimal respect to a state,

is also optimal respect to every following optimal state. But Theorem 34 also suggests and

partially imply a useful characterization of optimal controls as solutions of an integral equation.

Theorem 35. Let k0 ≥ 0, c∗ ∈ Λ (k0) . Hence the following are equivalent:

i) c∗ is optimal at k0

ii) For every τ > 0:

V (k0) =

� τ

0

e−ρtu (c∗ (t)) dt+ e−ρτV (k (τ ; k0, c
∗))

Moreover, i) or ii) imply that for every τ > 0, c∗ (·+ τ) is admissible and optimal at k (τ ; k0, c
∗).

Proof. i)⇒ ii) Let us assume that c∗ is admissible and optimal at k0 ≥ 0 and fix τ > 0. Observe

that c∗ (·+ τ) is admissible at k (τ ; k0, c
∗) by Remark 33. Hence, by Theorem 34:

V (k0) ≥
� τ

0

e−ρtu (c∗ (t)) dt+ e−ρτV (k (τ ; k0, c
∗))

≥
� τ

0

e−ρtu (c∗ (t)) dt+ e−ρτU (c∗ (·+ τ) ; k (τ ; k0, c
∗))

=

� +∞

0

e−ρtu (c∗ (t)) dt = U (c∗; k0) = V (k0) . (1.52)

Hence

V (k0) =

� τ

0

e−ρtu (c∗ (t)) dt+ e−ρτV (k (τ ; k0, c
∗)) . (1.53)

ii) ⇒ i) Suppose that c∗ ∈ Λ (k0) and (1.53) holds for every τ > 0. For every ε > 0 pick

ĉε ∈ Λ
(
k
(

1
ε ; k0, c

∗)) such that:

V

(
k

(
1

ε
; k0, c

∗
))
− ε ≤ U

(
ĉε; k

(
1

ε
; k0, c

∗
))

. (1.54)

Then define

cε (t) :=

c∗ (t) if t ∈
[
0, 1

ε

]
ĉε
(
t− 1

ε

)
if t > 1

ε

By the same arguments we used in the proof of Theorem 34 , cε ∈ Λ (k0) and, obviously,

cε
(
t+ 1

ε

)
= ĉε (t) for every t > 0.
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Hence, taking τ = 1/ε in (1.53), we have by (1.54):

V (k0)− εe−ρ/ε =

� 1/ε

0

e−ρtu (c∗ (t)) dt+ e−ρ/ε
[
V

(
k

(
1

ε
; k0, c

∗
))
− ε
]

≤
� 1/ε

0

e−ρtu (c∗ (t)) dt+ e−ρ/εU

(
ĉε; k

(
1

ε
; k0, c

∗
))

=

� 1/ε

0

e−ρtu (c∗ (t)) dt+

� +∞

0

e−ρ(t+
1
ε )u

(
cε

(
t+

1

ε

))
dt

=

� 1/ε

0

e−ρtu (c∗ (t)) dt+

� +∞

1/ε

e−ρsu (cε (s)) ds (1.55)

Now we show that the second addend tends to 0 as ε → 0 . First, using Jensen inequality and

the properties of the function ψk0 established in Lemma 20, we see that for every T ≥ 1/ε:

� T

1/ε

e−ρsu (cε (s)) ds =

[
e−ρs

� s

1/ε

u (cε (τ)) dτ

]s=T
s=1/ε

+ ρ

� T

1/ε

e−ρs
� s

1/ε

u (cε (τ)) dτds

≤ e−ρT
� T

0

u (cε (τ)) dτ + ρ

� T

1/ε

e−ρs
� s

0

u (cε (τ)) dτds

≤ ψk0 (T ) + ρ

� T

1/ε

se−ρsu

(� s
0
cε (τ) dτ

s

)
ds

→ ρ

� +∞

1/ε

se−ρsu

(� s
0
cε (τ) dτ

s

)
ds as T → +∞ (1.56)

(remembering that cε is admissible at k0). By point i) of Lemma 20, for every ε < 1 and every

s ≥ 1/ε:

se−ρsu

(� s
0
cε (τ) dτ

s

)
≤ se−ρsu

(
M (k0)

[
1 + e(L+ε0)s

]
+

M (k0)

s (L+ ε0)

)

≤ se−ρs

{
u (M (k0)) +M (k0)u

(
e(L+ε0)s

)
+ u

(
M (k0)

L+ ε0

)}

(remembering that u is increasing and has the properties in Remark 19) which implies, together
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with (1.56), for every ε < 1:

0 ≤
� +∞

1/ε

e−ρsu (cε (s)) ds ≤ ρ

� +∞

1/ε

se−ρsu

(� s
0
cε (τ) dτ

s

)
ds

≤ ρ

[
u (M (k0)) + u

(
M (k0)

L+ ε0

)]� +∞

1/ε

se−ρsds+

+ ρM (k0)

� +∞

1/ε

se−ρsu
(
e(L+ε0)s

)
ds.

By Remark 3 the last integral converges, hence the upper bound tends to 0 as ε→ 0.

Hence, letting ε→ 0 in (1.55), we find:

V (k0) ≤
� +∞

0

e−ρtu (c∗ (t)) dt = U (c∗; k0)

which implies that c∗ is optimal at k0.

Finally, if i) holds, then by (1.52):

V (k (τ ; k0, c
∗)) = U (c∗ (·+ τ) ; k (τ ; k0, c

∗)) .

1.7.2 The value function as a viscosity solution of HJB

In many interesting cases the value function V is non-differentiable. Moreover, in general it is

not possible to prove the differentiability of V relying only on the fact that it solves the Bellman

Functional Equation, or BFE (in our case, equation (1.50)), since the latter needs not have a

unique regular solution. Of course such equation has a natural “infinitesimal version” (usually

called Hamilton-Jacobi-Bellman equation, or HJB, which is in general a first order non-linear

PDE), and it can be proven that any continuously differentiable solution to BFE is indeed a

solution of HJB. This is of no help without information about the regularity of V ; furthermore,

HJB could have no classical solution (see e.g. [38]).

This is why the theory of viscosity solutions plays a key role in Dynamic Programming methods:

one wonders if the value function is a solution of HJB in a weaker sense. As pointed out in

the introduction, our case is a bit special meaning that the problem itself of the value function

being a viscosity solution of HJB equation must be proven to be meaningful. Indeed the “right”

equation involves an Hamiltonian function whose domain is not RN (in our case R2)1, so the

1This turns out to be a consequence of the unboundedness of the the running cost u and, again, of the
non-compactness of the control space.
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test functions involved in the definition of viscosity solution must match this restriction. This is

ensured by asking that the candidate solution has a special property, stronger than monotonicity.

Definition 36. Let f ∈ C0 ((0,+∞) ,R); we say that f ∈ C+ ((0,+∞) ,R) if, and only if, for

every k0 > 0 there exist δ, C+, C− > 0 such that

f (k0 + h)− f (k0)

h
≥ C+ ∀h ∈ (0, δ)

f (k0 + h)− f (k0)

h
≥ C− ∀h ∈ (−δ, 0)

We note that by Theorem 32, (ii) the value function V satisfies

V ∈ C+ ((0,+∞) ,R) . (1.57)

Definition 37. The function H : [0,+∞)× (0,+∞)→ R defined by

H (k, p) := − sup {[F (k)− c] · p+ u (c) / c ∈ [0,+∞)}

is called Hamiltonian.

The equation

ρv (k) +H (k, v′ (k)) = 0 ∀k > 0 (1.58)

in the unknown v ∈ C+ ((0,+∞) ,R)∩C1 ((0,+∞) ,R) is called Hamilton-Jacobi-Bellman equa-

tion (HJB).

Observe that any solution of (1.58) must be strictly increasing, by Definition 36.

Remark 38. The Hamiltonian is always finite. Indeed

− sup
c∈[0,+∞)

{[F (k)− c] · p+ u (c)} > −∞ ⇐⇒ p > 0.

If p > 0, since limc→+∞ u′ (c) = 0 we can choose cp ≥ 0 such that u′ (cp) ≤ p; this implies by

the concavity of u:

∀c ≥ 0 : u (c)− cp ≤ u (c)− u′ (cp) c ≤ u (cp)− u′ (cp) cp,

so that

−F (k) p− sup
c∈[0,+∞)

{u (c)− cp} ≥ −F (k) p− u (cp) + u′ (cp) cp > −∞.
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Otherwise, when p ≤ 0 , since limc→+∞ u (c) = +∞ we have

−F (k) p− sup
c∈[0,+∞)

{u (c)− cp} ≤ −F (k) p− sup
c∈[0,+∞)

u (c) = −∞.

Definition 39. A function v ∈ C+ ((0,+∞) ,R) is called a viscosity subsolution [supersolution]

of (HJB) if, and only if:

for every ϕ ∈ C1 ((0,+∞) ,R) and for every local maximum [minimum] point k0 > 0 of v − ϕ:

ρv (k0)− sup {[F (k0)− c] · ϕ′ (k0) + u (c) / c ∈ [0,+∞)} =

ρv (k0) +H (k0, ϕ
′ (k0)) ≤ 0

[≥ 0]

If v is both a viscosity subsolution of (HJB) and a viscosity supersolution of (HJB), then we say

that v is a viscosity solution of (HJB).

Remark 40. The latter definition is well posed. Indeed, let v ∈ C+ ((0,+∞) ,R) and ϕ ∈
C1 ((0,+∞) ,R). If k0 is a local maximum for v − ϕ in (0,+∞), then for h < 0 big enough we

have:

v (k0)− v (k0 + h) ≥ ϕ (k0)− ϕ (k0 + h) =⇒

0 < C− ≤ v (k0)− v (k0 + h)

h
≤ ϕ (k0)− ϕ (k0 + h)

h
.

If k0 is a local minimum for v − ϕ in (0,+∞), then for h > 0 small enough we have:

v (k0)− v (k0 + h) ≤ ϕ (k0)− ϕ (k0 + h) =⇒

0 < C+ ≤ v (k0)− v (k0 + h)

h
≤ ϕ (k0)− ϕ (k0 + h)

h
.

In both cases, we have ϕ′ (k0) > 0, so the quantity H (k0, ϕ
′ (k0)) involved in the definition is

well-defined.

By (1.57) we see that the value function is a good candidate to be a viscosity solution of HJB.

We are now going to prove that this is indeed the case. As pointed out in the introduction, this

will be done without any regularity assumption on H; nevertheless, this function can be easily

shown to be continuous, since for every k ≥ 0, p > 0:

H (k, p) = F (k) p+ (−u)
∗

(p) ,

where (−u)
∗

is the (convex) conjugate function of the convex function −u.
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Lemma 41. Let k0 > 0 and (cT )T>0 ⊆ Λ (k0) satisfying:

‖cT ‖∞,[0,T ] ≤ N (k0, T ) ∀T > 0.

where N is the function defined in Lemma 9. Hence

∀T ∈ [0, 1] : ∀t ∈ [0, T ] : |k (t; k0, cT )− k0| ≤ TeMt [F (k0) +N (k0, 1)] .

In particular k (T ; k0, cT )→ k0 as T → 0.

Proof. Set k0 and (cT )T>0 as in the hypothesis and fix 0 ≤ T ≤ 1. Hence integrating both sides

of the state equation we get, for every t ∈ [0, T ]:

k (t; k0, cT )− k0 =

� t

0

[F (k0)− cT (s)] ds+

� t

0

[F (k (s; k0, cT ))− F (k0)] ds

which implies by Remark 7:

|k (t; k0, cT )− k0| ≤
� t

0

|F (k0)− cT (s)|ds+

� t

0

|F (k (s; k0, cT ))− F (k0)|ds

≤
� T

0

|F (k0)− cT (s)|ds+ M̄

� t

0

|k (s; k0, cT )− k0|ds

Hence by Gronwall’s inequality and by the monotonicity of N (k0, ·), for every T ∈ [0, 1] and

every t ∈ [0, T ]:

|k (t; k0, cT )− k0| ≤ eM̄t

� T

0

|F (k0)− cT (s)|ds.

≤ TeM̄t [F (k0) +N (k0, T )]

≤ TeM̄t [F (k0) +N (k0, 1)] .

Theorem 42. The value function V : [0,+∞)→ R is a viscosity solution of (HJB).

Consequently, if V ∈ C1 ([0,+∞) ,R), then V is strictly increasing and is a solution of (HJB) -

(1.58) in the classical sense.

Proof. In the first place, we show that V is a viscosity supersolution of (HJB).

Let ϕ ∈ C1 ((0,+∞) ,R) and k0 > 0 be a local minumum point of V − ϕ, so that

V (k0)− V ≤ ϕ (k0)− ϕ (1.59)
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in a proper neighbourhood of k0. Now fix c ∈ [0,+∞) and set k := k (·; k0, c). As k0 > 0, there

exists Tc > 0 such that k > 0 in [0, Tc]. Hence the control

c̃ (t) :=

c if t ∈ [0, Tc]

0 if t > Tc

is admissible at k0. Then by Theorem 34, for every τ ∈ [0, Tc]:

V (k0)− V (k (τ)) ≥
� τ

0

e−ρtu (c̃ (t)) dt+ V (k (τ))
[
e−ρτ − 1

]
= u (c)

� τ

0

e−ρtdt+ V (k (τ))
[
e−ρτ − 1

]
.

Hence by (1.59) and by the continuity of k, we have for every τ > 0 sufficiently small:

ϕ (k (0))− ϕ (k (τ))

τ
≥ u (c)

� τ
0
e−ρtdt

τ
+ V (k (τ))

[e−ρτ − 1]

τ
.

Letting τ → 0 and using the continuity of V and k:

−ϕ′ (k0) [F (k0)− c] ≥ u (c)− ρV (k0)

which implies, taking the sup for c ≥ 0:

ρV (k0) +H (k0, ϕ
′ (k0)) ≥ 0

Secondly we show that V is a viscosity subsolution of (HJB).

Let ϕ ∈ C1 ((0,+∞) ,R) and k0 > 0 be a local maximum point of V − ϕ, so that

V (k0)− V ≥ ϕ (k0)− ϕ (1.60)

in a proper neighborhood N (k0) of k0.

Fix ε > 0 and, using the definition of V , define a family of controls (cT,ε)T>0 ⊆ Λ (k0) such that

for every T > 0:

V (k0)− Tε ≤ U (cT,ε; k0) . (1.61)

Now take (cT,ε)
T

as in Lemma 9 and set c̄T,ε := (cT,ε)
T

for simplicity of notation (so that
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c̄T,ε ∈ Λ (k0)). We have:

V (k0)− Tε ≤ U (cT,ε; k0) ≤ U (c̄T,ε; k0)

=

� T

0

e−ρtu (c̄T,ε (t)) dt+ e−ρT
� +∞

T

e−ρ(s−T )u (c̄T,ε (s− T + T )) ds

=

� T

0

e−ρtu (c̄T,ε (t)) dt+ e−ρTU (c̄T,ε (·+ T ) ; k (T ; k0, c̄T,ε))

≤
� T

0

e−ρtu (c̄T,ε (t)) dt+ e−ρTV (k (T ; k0, c̄T,ε))

where we have used Remark 33.

By Lemma 41 we have for T > 0 sufficiently small (say T < T̂ ),

k (T ; k0, c̄T,ε) ∈ N (k0) .

Hence, setting k̄T,ε := k (·; k0, c̄T,ε), for every T < T̂ , we have by (1.60):

ϕ (k0)− ϕ
(
k̄T,ε (T )

)
− e−ρTV

(
k̄T,ε (T )

)
≤ V (k0)− V

(
k̄T,ε (T )

)
− e−ρTV

(
k̄T,ε (T )

)
≤

� T

0

e−ρtu (c̄T,ε (t)) dt− V
(
k̄T,ε (T )

)
+ Tε

which implies

� T

0

−
{
ϕ′
(
k̄T,ε (t)

) [
F
(
k̄T,ε (t)

)
− c̄T,ε (t)

]
+ e−ρtu (c̄T,ε (t))

}
dt

≤ V
(
k̄T,ε (T )

) [
e−ρT − 1

]
+ Tε. (1.62)

Observe that the integral at the left hand member bigger than:

� T

0

−{[ϕ′ (k0) + ω1 (t)] [F (k0)− c̄T,ε (t) + ω2 (t)] + u (c̄T,ε (t))}dt =

� T

0

−{ϕ′ (k0) [F (k0)− c̄T,ε (t)] + u (c̄T,ε (t))} dt+

+

� T

0

−{ϕ′ (k0)ω2 (t) dt+ ω1 (t) [ω2 (t) + F (k0)− c̄T,ε (t)]} dt (1.63)

where ω1, ω2 are functions which are continuous in a neighborhood of 0 and satisfy:

ω1 (0) = ω2 (0) = 0.
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This implies, for T < 1:∣∣∣∣∣
� T

0

ϕ′ (k0)ω2 (t) dt+

� T

0

ω1 (t) [ω2 (t) + F (k0)− c̄T,ε (t)] dt

∣∣∣∣∣
≤ |ϕ′ (k0)| o1 (T ) + o2 (T ) +

� T

0

|ω1 (t)| [F (k0) + c̄T,ε (t)] dt

≤ |ϕ′ (k0)| o1 (T ) + o2 (T ) + [F (k0) +N (k0, T )] o3 (T )

≤ |ϕ′ (k0)| o1 (T ) + o2 (T ) + [F (k0) +N (k0, 1)] o3 (T )

where

lim
T→0

oi (T )

T
= 0

for i = 1, 2, 3. Observe that this is true even if the ois depend on T , by Lemma 41. For instance,

|o1 (T )| =

∣∣∣∣∣
� T

0

ω2 (t) dt

∣∣∣∣∣ ≤ T max
[0,T ]
|ω2| = T |ω2 (τT )|

= T
∣∣F (k̄T,ε (τT )

)
− F (k0)

∣∣
≤ MT

∣∣k̄T,ε (τT )− k0

∣∣ ≤MT 2eM̄τT [F (k0) +N (k0, 1)]

Moreover, by the fact that V ∈ C+ ([0,+∞) ,R) and by Remark 40, we have for any t ∈ [0, T ]:

−{ϕ′ (k0) [F (k0)− c̄T,ε (t)] + u (c̄T,ε (t))} ≥ − sup
c≥0
{ϕ′ (k0) [F (k0)− c] + u (c)}

= H (k0, ϕ
′ (k0)) > −∞,

by which we can write:

� T

0

−{ϕ′ (k0) [F (k0)− c̄T,ε (t)] + u (c̄T,ε (t))}dt ≥ T ·H (k0, ϕ
′ (k0)) .

Hence, by (1.62) and (1.63):

V
(
k̄T,ε (T )

) [
e−ρT − 1

]
+ Tε

≥ −
� T

0

{ϕ′ (k0) [F (k0)− c̄T,ε (t)] + u (c̄T,ε (t))} dt+

+

� T

0

−{ϕ′ (k0)ω2 (t) dt+ ω1 (t) [ω2 (t) + F (k0)− c̄T,ε (t)] dt}

≥ T ·H (k0, ϕ
′ (k0)) + oT→0 (T )

for any 0 < T < 1, T̂ . Hence dividing by T , and then letting T → 0, again by Lemma 41 and
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the continuity of V we obtain:

−ρV (k0) + ε ≥ H (k0, ϕ
′ (k0))

which proves the assertion since ε is arbitrary.

1.7.3 Reverse Dynamic Programming

The set of the viscosity solutions to a differential equation is, in general, not stable under the

change of sign of the equation. This particular phenomenon makes it interesting to ask wether

the value function is also a viscosity solution to the “reverse” HJB equation

− ρv (k)−H (k, v′ (k)) = 0, k > 0. (1.64)

We will prove that this is true at points k that can be reached by an optimal trajectory.

We preliminary observe that the present section does not require a change of setting for the

problem, like for instance the introduction of a new set of admissible controls. We only need

to consider “backward” trajectories associated with standard “backward translated” admissible

controls. To this scope, we introduce the following notation.

Definition 43. Let k0 ≥ 0, T > 0. If c is a non negative constant, the function θ (·; k0, c) is the

unique solution to the following Cauchy Problem in the unknown θ:θ (0) = k0

θ̇ (t) = F (θ (t))− c ∀t ≤ 0.

If c ∈ L1
loc ([0,+∞)), the function θ (·; k0, c (·+ T )) is the unique solution to the following Cauchy

Problem in the unknown θ:θ (0) = k0

θ̇ (t) = F (θ (t))− c (t+ T ) ∀t ∈ [−T, 0] .

Lemma 44. Let k0 > 0, c ≥ 0. Then there exists T1 (k0, c) > 0 such that, for every T ∈
(0, T1 (k0, c)) there exists y0 (T ) = y (k0, c, T ) such that

y0 (T ) > 0

k (·; y0 (T ) , c) > 0 in [0, T ]

k (T ; y0 (T ) , c) = k0.
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Furthermore, y0 (T )→ k0 as T → 0.

Proof. Fix k0 > 0 and c ≥ 0, and set θ = θ (·; k0, c) as in Definition 43. Choose T (k0, c) > 0 such

that θ > 0 in [−T (k0, c) , 0], and take T ∈ (0, T (k0, c)). Set y0 (T ) = θ (−T ) (which depends

also on k0 and c since θ does). Observe that the function k (·+ T ; y0 (T ) , c) is well defined in

[−T, 0] (even if the constant control c may not be admissible at y0 (T )), takes value y0 (T ) in

−T and satisfies the same differential equation as θ in [−T, 0] (given by the dynamics F (·)− c).
Hence

k (·+ T ; y0 (T ) , c) = θ in [−T, 0] .

In particular

k (·; y0 (T ) , c) > 0 in [0, T ]

k (T ; y0 (T ) , c) = θ (0) = k0.

Obviously y0 (T )→ k0 as T → 0 since the continuous function θ is not defined upon T .

Corollary 45. The value function V is a viscosity subsolution of the “reverse” HJB equation

− ρv (k)−H (k, v′ (k)) = 0 ∀k > 0 (1.65)

in the unknown v, where

H (k, p) := − sup
c≥0
{p [F (k)− c] + u (c)} ∀k ≥ 0, p > 0.

Proof. Let k0 > 0 be a local maximum point of V − ϕ, where ϕ is a C1 function defined in a

neighborhood of k0. We know by Theorem 34 that V satisfies the Bellman Functional Equation:

∀y0 > 0 : ∀T > 0 :

V (y0) = sup
c∈Λ(y0)

{� T

0

e−ρtu (c (t)) dt+ e−ρTV (k (T ; y0, c))

}
. (1.66)

The idea is to interchange the roles of the two states appearing as arguments of V in the latter

relation: k (T ; y0, c) “becomes k0” thanks to Lemma (44).

First we deduce the appropriate relation with constant controls. Fix a constant c ≥ 0; any

trajectory k (·; y0, c) - for y0 > 0 - is strictly positive in an interval [0, T2 (y0, c)]; hence the

control γ := cχ[0,T2(y0,c)] belongs to Λ (y0). Applying the above relation to γ leads to:

∀y0 > 0 : ∀T ∈ (0, T2 (y0, c)) : V (y0) ≥ u (c)

� T

0

e−ρtdt+ e−ρTV (k (T ; y0, c)) .
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Now take T1 (k0, c) and, for T ∈ (0, T1 (k0, c)), y0 (T ) like in Lemma (44). Hence, for every

T ∈ (0, T1 (k0, c) ∧ T2 (y0 (T ) , c)):

V (y0 (T )) ≥ u (c)
� T

0
e−ρtdt+ e−ρTV (k0)

⇐⇒

V (y0 (T ))− V (k0) + V (k0)
(
1− e−ρT

)
≥ u (c)

� T
0
e−ρtdt

which implies, since y0 (T )→ k0 as T → 0,

ϕ (y0 (T ))− ϕ (k0) + V (k0)
(
1− e−ρT

)
≥ u (c)

� T

0

e−ρtdt,

for T > 0 sufficiently small. Since y0 (T ) = θ (−T ; k0, c) = θ (−T ) (as shown in the proof of

Lemma 44), dividing by T and passing to the limit for T → 0 we obtain:

d

dT |T=0
ϕ (θ (−T )) + ρV (k0) = −ϕ′ (k0) [F (k0)− c] + ρV (k0)

≥ u (c) .

Thus, passing to the sup for c ≥ 0:

−ρV (k0)−H (k0, ϕ
′ (k0)) ≤ 0,

which proves the subsolution condition.

We now prove the analogous of Lemma 44 for optimal controls.

Lemma 46. Let k0 > 0, c∗ ∈ Λ (k0) optimal. Then there exists T (k0) > 0 such that, for every

T ∈ (0, T (k0)) there exists y0 (T ) = y (k0, c
∗, T ) such that

y0 (T ) > 0

k (·; y0 (T ) , c∗) > 0 in [0, T ]

k (T ; y0 (T ) , c∗) = k0.

Also in this case, k0 (T )→ 0 as T → 0.

Proof. Fix k0 > 0, c∗ ∈ Λ (k0) optimal at k0. We know that, by construction of the optimum,

c∗ (·+ T ) ≤ N (k0, T ) almost everywhere in [−T, 0]. Consequently, for T ∈ (0, 1):

c∗ (·+ T ) ≤ N (k0, 1) a.e. in [−T, 0] ,
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since N (k0, ·) is non-decreasing. Hence, by comparison,

θ (·; k0, c
∗ (·+ T )) ≥ θ (·; k0, N (k0, 1)) in [−T, 0] . (1.67)

Clearly θ (·; k0, N (k0, 1)) > 0 in [−T (k0) , 0] for some T0 (k0) > 0.

Thus, for 0 < T < T0 (k0) ∧ 1 =: T (k0):

θ (·; k0, c
∗ (·+ T )) > 0 in [−T, 0] (1.68)

and in particular y0 (T ) := θ (−T ; k0, c
∗ (·+ T )) > 0.

Furthermore, setting k := k (·+ T ; y0 (T ) , c∗) we have:

k̇ (t) = F (k (t))− c∗ (t+ T ) ∀t ∈ [−T, 0]

k (−T ) = y0 (T ) ,

which implies k = θ (·; k0, c
∗ (·+ T )) in [−T, 0]. Hence, by (1.68):

k (·; y0 (T ) , c∗) > 0 in [0, T ]

k (T ; y0 (T ) , c∗) = k0.

Eventually observe that, by Proposition 31, for T ∈ (0, 1):

c∗ (·+ T ) ≥ g−1

(
ρeρ

V (k0 + 1)

F (k0)

)
=: C∗ (k0) a.e. in [−T, 0] ,

so that θ (·; k0, c
∗ (·+ T )) ≤ θ (·; k0, C

∗ (k0)). This implies, remembering (1.67):

y0 (T ) = θ (−T ; k0, c
∗ (·+ T ))→ k0 as T → 0.

Remark 47. The only property of optimal controls used in the proof of the previous lemma

is the existence of local bounds that are independent on the choice of the optimum. Anyway,

the Lemma may not guarantee that V is also a viscosity supersolution of equation (1.65). The

starting point for proving this property should still be the Dynamic Programming Principle

(1.66), considered in the “≤” direction - that is to say - as the assertion that V (y0) is the least

upper bound of the set at the right hand side. Or better, the following version of the principle
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can be used:

∀y0 > 0 : ∀c∗ ∈ Λ (y0) optimal at y0 : ∀T > 0 :

V (y0) =

� T

0

e−ρtu (c∗ (t)) dt+ e−ρTV (k (T ; y0, c
∗)) , (1.69)

provided by Theorem 35. A given control c∗, optimal at y0, can be the starting point of the

procedure. Consider a state k0 > 0, a control c∗ optimal at k0 and take y0 (T ) as in Lemma 46:

the point is that c∗ need not be optimal at y0 (T ) - so (1.69) cannot be used for y0 = y0 (T ),

even if it is true that k (T ; y0 (T ) , c∗) = k0.

But if it is assumed a priori that, given k0 > 0, we can start from some y0 and c∗ optimal at

y0, then the proof can be accomplished.

Proposition 48. Let k0 > 0 be an optimal point for the problem - that is to say, assume that

there exist y0, T > 0 and c∗ ∈ Λ (y0) optimal at y0 such that

k0 = k (T ; y0, c
∗) .

Then we have

∀τ ∈ (0, T ] :

V (k0) = −
� τ

0

eρtu (c∗ (−t+ T )) dt+ eρτV (θ (−τ ; k0, c
∗ (·+ T ))) . (1.70)

Consequently, the value function V is a viscosity supersolution of the “reverse-restricted” HJB

equation:

−ρv (k)−H (k, v′ (k)) = 0 ∀k > 0 optimal for the problem

in the unknown v.

Proof. We first prove relation (1.70). Let k0 > 0 be an optimal point for the problem, with

k0 = k (T, y0, c
∗) for some y0, T > 0 and c∗ ∈ Λ (y0) optimal at y0. By (1.69) we have:

V (y0) =
� T

0
e−ρtu (c∗ (t)) dt+ e−ρTV (k0)

s=T−t⇐⇒

V (k0) = −
� T

0
eρsu (c∗ (−s+ T )) ds+ eρTV (y0) .

It is easily seen that y0 = θ (−T ; k0, c
∗ (·+ T )). Indeed, set for simplicity of notation θT =
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θ (·; k0, c
∗ (·+ T )) and kT := k (·+ T ; y0, c

∗); both functions are defined in [−T, 0] and satisfy:θT (0) = k0

˙θT (t) = F (θT (t))− c∗ (t+ T ) ∀t ∈ [−T, 0]

kT (0) = k0

k̇T (t) = F (kT (t))− c∗ (t+ T ) ∀t ∈ [−T, 0] ,

where kT (0) = k0 by the optimality assumption on k0. Hence θT = kT in [−T, 0] and in

particular θT (−T ) = y0. Thus

V (k0) = −
� T

0

eρsu (c∗ (−s+ T )) ds+ eρTV (θT (−T )) . (1.71)

The next step is to extend (1.71) to the interval (0, T ] in order to obtain (1.70).

Set τ ∈ (0, T ). We know by Theorem 35 that a “forward optimality preservation principle”

holds, which implies that c∗ (·+ T − τ) is optimal at k (T − τ ; y0, c
∗).

Hence, relation (1.69) applied to these data at time τ gives:

V (k (T − τ ; y0, c
∗)) =� τ

0

e−ρtu (c∗ (t+ T − τ)) dt+ e−ρτV (k (τ ; k (T − τ ; y0, c
∗) , c∗ (·+ T − τ))) . (1.72)

We have

k (T − τ ; y0, c
∗) = θT (−τ) (1.73)

k (·; k (T − τ ; y0, c
∗) , c∗ (·+ T − τ)) = θT (· − τ) (1.74)

The first relation simply means that kT (−τ) = θT (−τ), while the second is again a consequence

of the uniqueness of the trajectory: both functions have the same dynamics by definition and

the same initial state by (1.73). Consequently:

k (τ ; k (T − τ ; y0, c
∗) , c∗ (·+ T − τ)) = k0. (1.75)

Plugging (1.73) and (1.75) in (1.72) we obtain:

V (θT (−τ)) =

� τ

0

e−ρtu (c∗ (t+ T − τ)) dt+ e−ρτV (k0) ,

which is easily seen to be equivalent to (1.70) by the change of variable s = τ − t.
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We now prove that the value function V is a viscosity supersolution of the reverse HJB equation

at optimal points.

Assume that k0 > 0 is an optimal point for the problem and also a local minimum of V − ϕ
where ϕ is a C1 function defined in a neighborhood of k0. Since θT (−τ)

τ→0→ k0 we have, for

every τ > 0 sufficiently small

V (θT (−τ))− V (k0) ≥ ϕ (θT (−τ))− ϕ (k0)

Hence by (1.70), for every τ ∈ (0, τ̄):

� τ

0

eρtu (c∗ (−t+ T )) dt = V (θT (−τ))− V (k0) + V (θT (−τ)) (eρτ − 1)

≥ ϕ (θT (−τ))− ϕ (k0) + V (θT (−τ)) (eρτ − 1)

= −
� τ

0

ϕ′ (θT (−t)) [F (θT (−t))− c∗ (−t+ T )] dt

+ V (θT (−τ)) (eρτ − 1) .

Since at both sides of the latter inequality the same quantity c∗ (−t+ T ) appears, we can take

the sup for c ≥ 0 (inside the integral, thanks to the integrability of the Hamiltonian):

� τ

0

sup
c≥0
{eρτu (c) + ϕ′ (θT (−t)) [F (θT (−t))− c]}dt ≥ V (θT (−τ)) (eρτ − 1) .

Since the Hamiltonian is also continuous, dividing by τ and passing to the limit for τ → 0, we

obtain

−ρV (k0)−H (k0, ϕ
′ (k0)) ≥ 0.

Thus also the supersolution condition is satisfied by V .

Remark 49. Relation (1.70) can be regarded to as a “Backward Dynamic Programming Princi-

ple” for optimal points.
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Chapter 2

Shallow Lake models with

monotone dynamics

We examine the optimal control problem related to a general monotone dynamics version of the

Shallow Lake model, and we prove the existence of an optimum. In the last twenty years, a

literature about this model has grown up, but, in our knowledge, no direct existence proof has

been provided up to now. The optimal control problem has been introduced in [28], and has been

studied mostly via dynamic programming ([26]), or from the dynamical systems viewpoint (see

e.g. [24], [25] and [28]). The latter approach consists in the analysis of the adjoint system that

is obtained by coupling the state equation with the adjoint equation given by the Pontryagin

Maximum Principle. As it is well known, this principle provides conditions for optimality that

in general are merely necessary.

As pointed out in the introduction, the main technical difficulties in order to prove the existence

of an optimum arise from the fact that good a priori estimates for the controls and for the

states are missing, because of the infinite horizon setting and the unboundedness assumption on

the set of admissible controls. Indeed, the intimate nature of the model requires to be allowed

to choose a (locally integrable) control function that reaches arbitrarily large values in a finite

time. In addition, arbitrarily small positive controls are allowed, and this in fact reinforces

the unboundedness phenomenon when optimization is taken into account, since the objective

functional has logarithmic dependence on the control. As such, this is a further context where

the application of any compactness result is not straightforward.

The model describes the dynamics of the accumulation of phosphorus in the ecosystem of a

shallow lake, from a optimal control theory perspective. Precisely, the state equation expresses

the (non-linear) relationship between the farming activities near the lake, which are responsible
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for the release of phosphorus, and the total amount of phosphorus in the water, which depends

also on the natural production and on the natural loss consisting of sedimentation, outflow and

sequestration in biomass.

Following [28], we can assert that the essential dynamics of the eutrophication process can be

modelled by the differential equation:

Ṗ (t) = −sP (t) + r
P 2 (t)

m2 + P 2 (t)
+ L (t) , (2.1)

where P is the amount of phosphorus in algae, L is the input of phosphorus (the “loading”), s

is the rate of loss, r is the maximum rate of internal loading, and m is the anoxic level.

After a change of variable and of time scale, we consider the normalized equation

ẋ (τ) = −bx (τ) +
x2 (τ)

1 + x2 (τ)
+ u (τ) ,

where x (·) := P (·) /m, u (·) = L (·) /r and b = sm/r. We see that the dynamics, as a function

of the state, has a convex-concave behaviour.

In an economical analysis, the dynamics of pollution must be considered together with the social

benefit of the different interest groups operating in the lake system. The social benefit obviously

depends both on the status of the water and on the intensity of the agricultural activities near

the lake; the latter, in a way, can be measured by the amount of phosphorus released in the

water.

The objective functional to be maximized represents this social benefit. Mathematically it is a

function of the pollution released by the farming activities, and takes into account the trade-offs

between the utility of agriculture and the utility of a clear lake.

Farmers have an interest in being able to increase the loading, so that the agricultural sector

can grow without the need to invest in new technology in order to reduce emissions. On the

other hand, groups such as fishermen, drinking water companies and any other industry making

use of the water prefer a clear lake, and the same holds for people who use to spend leisure time

in relation with the lake. It is assumed that a community or country, balancing these different

interests, can agree on a welfare function of the form

log u− cx2 (c > 0),

in the following sense: the lake has value as a “waste sink” for agriculture log u, where u is

the input of phosphorus due to farming; on the other hand, it provides ecological services that

decrease with the total amount of phosphorus x as −cx2.
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As a final consideration, we observe that clause iv) in Assumption 1 about the convex-concave

behaviour of the internal dynamics function F could be substituted with a global lipschitz-

continuity or, equivalently, a super-linearity and sub-linearity requisite. This is because a proper

relation with affine functions is the only condition that F is required to satisfy in order that the

results in Remarks 53 and 54 hold. Such remarks establish the basic comparative estimates for

admissible trajectories used in the proof of the existence of an optimal control.

In this respect, the situation is similar to the one in Chapter 1 (see the remark at the end of

subsection 1.1.2).

2.1 The optimal control problem

The present section is devoted to defining the optimal control problem and to deducing some

elementary consequences of the definitions. The results include the well-posedness of the state

equation and some basic comparison estimates between two admissible trajectories and between

an admissible trajectory and the solution of a linear ordinary differential equation.

According to the considerations made in the last part of the latter introduction, the dynamics

of the problem is described by the following evolution equation in the unknown x(·):ẋ (t) = F (x (t)) + u (t) t ≥ 0

x (0) = x0.
(2.2)

Assumption 1. The endogenous pollution dynamics F has the following properties:

i) F ∈ C1 ([0,+∞)), F ′ ≤ 0 in (0,+∞)

ii) F (0) = 0, lim
x→+∞

F (x) = −∞

iii) F ′+ (0) = −s0 < 0, lim
x→+∞

F ′ (x) = −s∞ ∈ (−∞, 0)

iv) there exists x̄ > 0 such that F is convex in [0, x̄] and concave in [x̄,+∞).

Clearly, the behaviour of F for negative inputs is not relevant for modelling purposes. Never-

theless, a conventional assumption for such domain is technically needed.

Assumption 2. Let −b0 := min{−s0,−s∞}. We assume that F (x) = −b0x for every x < 0.

These assumptions imply that F ′ has discontinuity in 0 when s0 < s∞. Anyway, this possibility

is by no means harmful, as shown by the following two remarks.

Remark 50. First observe that, by Cauchy’s Theorem, the dynamics F satisfies:

F (x) ≥ −b0x ∀x ∈ R, (2.3)
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since F ′ ≥ −b0 in (0,+∞) while the equality holds for x ≤ 0.

Secondly, the function F is globally Lipschitz-continuous. Indeed:∣∣∣∣F (x1)− F (x2)

x1 − x2

∣∣∣∣ =
F (x1)− F (x2)

x2 − x1
≤ b0 ∀x1, x2 ∈ R. (2.4)

If −s0 ≤ −s∞, then F is continuously differentiable in R with F ′ ≥ −b0 in R, and relation (2.4)

follows, again, from Cauchy’s Theorem.

In the case −s0 > −s∞ we have F ′+ (0) > F ′− (0), and (2.4) is obtained in the following way.

If x1 > x2 ≥ 0 then use again the latter theorem; if x1 < x2 ≤ 0 then the equality holds. If

x1 · x2 <0, we have the following direct estimate, by (2.3) :

F (x1)− F (x2) ≤ −b0 (x1 − x2) for x1 < 0 < x2

F (x1)− F (x2) ≥ −b0 (x1 − x2) for x2 < 0 < x1

which implies (2.4) for the present case.

We stress that, as a consequence of the definitions, F ′ satisfies:

−b0 ≤ F ′(x) ≤ 0 ∀x ≥ 0.

Remark 51. (Solution to the state equation). For every fixed x0 ≥ 0 and u ∈ L1
loc ([0,+∞)),

the Cauchy’s Problem (3.1) admits a unique solution defined in the whole temporal half-line

[0,+∞), as a consequence of (2.4). This is true even if the right hand side of the state equation

does not have continuous dependence on time. To prove this, we can use the following simple

fixed-point argument.

First, take τ0 ∈
(

0, 1
b0

)
and consider the space X1 := C0 ([0, τ0]) and the map F1 : X1 → X1

such that F1 (x) (t) := x0 +
� t

0
[F (x (s)) + u (s)] ds for every x ∈ X1, t ∈ [0, τ0].

If we consider the space X1 together with the distance induced by the L∞ norm, then F1 is a

contraction mapping on X1 with Lipschitz constant τ0b0 < 1. Hence F admits a unique fixed

point x (·;x0, u). This is indeed an absolutely continuous function which solves the integral

equation corresponding to (3.1) in [0, τ0]. To extend the solution to [τ0, 2τ0], consider the

space X2 := C0 ([τ0, 2τ0]) with the map F2 : X2 → X2 such that F2 (x) (t) := x (τ0;x0, u) +� t
τ0

[F (x (s)) + u (s)] ds for x ∈ X2 and t ∈ [τ0, 2τ0]; then argue in the same way.

The procedure can be repeated to obtain an essential solution of equation (3.1) defined in

[0,+∞).

Notation 1. For every x0 ≥ 0 and every u ∈ L1
loc ([0,+∞)) the function

t→ x (t;x0, u) , t ≥ 0
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is the unique solution to the Cauchy’s Problem (3.1) in the unknown x (·).

Now we introduce the objective functional and its domain.

For every x0 ≥ 0, the set of the admissible controls is:

Λ (x0) :=

{
u ∈ L1

loc ([0,+∞)) |u > 0 a.e. in [0,+∞) and

� +∞

0

e−ρtu(t)dt < +∞
}

;

the objective functional that is to be maximized is defined by

B (x0;u) =

� +∞

0

e−ρt
[
log u (t)− cx2 (t;x0, u)

]
dt ∀u ∈ Λ (x0) ,

where ρ and c are fixed positive constants.

Observe that the integrability condition

� +∞

0

e−ρtu(t)dt < +∞

on admissible controls prevents the objective functional to take value +∞ − ∞. Indeed, if

u ∈ Λ (x0), then the positive part of the above integral, i.e.

� +∞

0

e−ρt
[
log u (t)− cx2 (t;x0, u)

]+
dt,

is certainly finite, since

e−ρt
[
log u(t)− cx2 (t;x0, u)

]
χ{u>exp cx2(t;x0,u)} (t) ≤

e−ρt log u(t)χ{u>1} (t) ≤ e−ρtu (t) .

Furthermore, such condition is the analogue of the classical condition u ∈ L1 ([0, T ]), which is

normally required in a finite horizon problem for a control u to be admissible.

Definition 52. The function V : [0,+∞)→ R such that

V (x0) = sup
u∈Λ(x0)

B (x0;u) ∀x0 ≥ 0

is called value function.

A sequence (un)n∈N ⊆ Λ (x0) is said to be maximizing at x0 if

lim
n→+∞

B (x0;un) = V (x0) .
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A control u∗ ∈ Λ (x0) is optimal at x0 if

B (x0;u∗) = V (x0) .

As a last stage of the present introductory section, we state two basic properties of the trajec-

tories x (·;x0, u) for x0 ≥ 0, u ∈ Λ(x0). These properties are needed throughout the paper in

order to carry out the calculations.

Remark 53. (Comparison with the decreasing exponential).

Fix x0 ≥ 0, u ∈ L1
loc ([0,+∞)) and set, for simplicity of notation, x (·) := x (·;x0, u) and

y (t) := e−b0t
(
x0 +

� t
0
eb0su (s) ds

)
. Then by (2.3) we have, for almost every t ≥ 0:

ẋ (t)− ˙y (t) = F (x (t)) + b0y (t)

≥ −b0 [x (t)− y (t)] ;

hence
d

dt

{
[x (t)− y (t)] eb0t

}
≥ 0.

Since x(0) = y(0) = x0, this proves the following assertion.

For every x0, t ≥ 0 and every u ∈ L1
loc ([0,+∞)) :

x (t;x0, u) ≥ e−b0t
(
x0 +

� t

0

eb0su (s) ds

)
. (2.5)

Now take ε > 0 such that −b := −s∞ + ε < 0. This implies that there exists a constant M > 0

such that

F (x) ≤ −bx+M ∀x ≥ 0. (2.6)

Fix x0 ≥ 0 and u ∈ Λ (x0). In particular, u > 0 almost everywhere in [0,+∞). Then, by (2.5),

x (·;x0, u) ≥ 0 in [0,+∞). Hence, with the same argument as before, we can exploit (2.6) in

order to obtain the following estimate for x (·;x0, u).

For every x0, t ≥ 0 and every u ∈ Λ (x0) :

x (t;x0, u) ≤ e−bt
(
x0 +

� t

0

ebs (M + u (s)) ds

)
. (2.7)

Remark 54. (Formula for the difference of two trajectories).

Let s1, s2 ≥ 0, u1, u2 ∈ Λ(x0) and t0 ≥ 0.
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Set x1 = x (·; s1, u1), x2 = x (·; s2, u2) and define:

h (x1, x2) (τ) :=


F (x1 (τ))− F (x2 (τ))

x1 (τ)− x2 (τ)
if x1 (τ) 6= x2 (τ)

F ′+ (x1 (τ)) if x1 (τ) = x2 (τ) .

The function h (x1, x2) is continuous in [0,+∞), since by (2.5) the trajectories x1 and x2 take

non-negative values. Moreover −b0 ≤ h ≤ 0 and the following equality holds:

∀t ≥ t0 : x1 (t)− x2 (t) = exp

(� t

t0

h (x1, x2) (τ) dτ

)
(x1 (t0)− x2 (t0))

+

� t

t0

exp

(� t

s

h (x1, x2) (τ) dτ

)
(u1 (s)− u2 (s)) ds. (2.8)

In particular, taking t0 = 0 and s1 = s2:

∀t ≥ 0 : x1 (t)− x2 (t) =

� t

0

exp

(� t

s

h (x1, x2) (τ) dτ

)
(u1 (s)− u2 (s)) ds (2.9)

Indeed, for every t ≥ t0:

ẋ1 (t)− ẋ2 (t) = F (x1 (t))− F (x2 (t)) + u1 (t)− u2 (t)

= h (x1, x2) (t) [x1 (t)− x2 (t)] + u1 (t)− u2 (t) .

Multiplying both sides of this equation by exp
(
−
� t
t0
h (x1, x2) (τ) dτ

)
we obtain:

d

dt

[
(x1 (t)− x2 (t)) exp

(
−
� t

t0

h (x1, x2) (τ) dτ

)]
= exp

(
−
� t

t0

h (x1, x2) (τ) dτ

)
(u1 (t)− u2 (t)) ∀t ≥ t0.

Fix t ≥ t0 and integrate between t0 and t; then (2.8) is easily obtained.

Remark 55. (Comparison between trajectories) Relation (2.8) implies a well known comparison

result, which in our case can be stated as follows.

Let s1, s2 ≥ 0 and u1, u2 ∈ Λ(x0); then for every t0 ≥ 0 and every t1 ∈ (t0,+∞], if u1 ≥ u2

almost everywhere in [t0, t1] and x (t0; s1, u1) ≥ x (t0; s2, u2), then

x (t; s1, u1) ≥ x (t; s2, u2) ∀t ∈ [t0, t1] .
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2.2 Boundedness of the value function

In this section we show that the value function is bounded from above. That is to say, the

objective functional is always less than a fixed, finite quantity not depending on the control or

on the initial state.

Together with this result, we prove some estimates concerning the controls and states which

are “not too far” from being optimal; such estimates will be used in the construction of the

optimum.

Remark 56. The objective functional is not identically equal to −∞. As a trivial example,

consider the control u ≡ 1 ∈ Λ (x0) for every x0 ∈ R. Then by (2.7):

0 ≤ x (t;x0, u) ≤ e−btx0 + (M + 1)
1− e−bt

b

which implies

x2 (t) ≤

(
x2

0 +
(M + 1)

2

b2

)
e−2bt + 2 (M + 1)

x0

b
e−bt +

(M + 1)
2

b2
.

Hence

B (x0;u) = −c
� +∞

0

e−ρtx2 (t;x0, u) dt > −∞.

Proposition 57. i) The value function V satisfies:

V (x0) ≤ 1

ρ
log

(
ρ+ b0√

2ec

)
∀x0 ≥ 0,

where e is the Napier’s constant.

ii) For every x0 ≥ 0, there exist constants K1 (x0) ,K2 (x0) > 0 such that, for every u ∈ Λ (x0)

with B(x0;u) sufficiently close to V (x0):

� +∞

0

e−ρtu (t) dt ≤ K1 (x0) , (2.10)

� +∞

0

e−ρtx (t;x0, u) (t) dt ≤ K2 (x0) . (2.11)

We will also use the following weaker estimate relative to a control u ∈ Λ (x0) such that B(x0;u)

is sufficiently close to V (x0):

� t

0

u (s) ds < K1 (x0) eρt ∀t ≥ 0. (2.12)

Proof. i) Let x0 ≥ 0, u ∈ Λ (x0), and, for simplicity of notation, x = x (·;x0, u) and B (u) =
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B (x0;u).

As a preliminary remark, observe that, by Tonelli’s Theorem:

� +∞

0

e−(ρ+β)t

� t

0

eβsu (s) dsdt =

� +∞

0

eβsu (s)

� +∞

s

e−(ρ+β)tdtds

=
1

ρ+ β

� +∞

0

eβsu (s) e−(ρ+β)sds

=
1

ρ+ β

� +∞

0

e−ρsu (s) ds (2.13)

for every constant β > 0. Since t → ρe−ρtdt is a probability density, by Jensen’s inequality we

have:

� +∞

0

e−ρtx2 (t) dt ≥ ρ

(� +∞

0

e−ρtx (t) dt

)2

≥ ρ

(� +∞

0

e−(ρ+b0)t

� t

0

eb0su (s) dsdt

)2

=
ρ

(ρ+ b0)
2

(� +∞

0

e−ρtu (t) dt

)2

,

in which we have used also (2.5), and (2.13) with β = b0.

Another application of Jensen’s inequality (to the concave function log) allows us to write down

the following estimate for B (u):

B (u) =

� +∞

0

e−ρt log u (t) dt− c
� +∞

0

e−ρtx2 (t) dt

≤ 1

ρ
log

(
ρ

� +∞

0

e−ρtu (t) dt

)
− c

ρ (ρ+ b0)
2

(
ρ

� +∞

0

e−ρtu (t) dt

)2

(2.14)

≤ 1

ρ
max
z>0

(
log z − c

(ρ+ b0)
2 z

2

)
=

1

ρ

(
log

ρ+ b0√
2c
− 1

2

)
=

1

ρ
log

(
ρ+ b0√

2ec

)
.

ii) Assume that B (u) > V (x0)− 1. Fix K̃ (x0) ≥ 0 such that

1

ρ
log z − c

ρ (ρ+ b0)
2 z

2 ≤ V (x0)− 1 ∀z > K̃ (x0) .
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Then by (2.14), the following relation holds:

� +∞

0

e−ρtu (t) dt ≤ 1

ρ
K̃ (x0) =: K1 (x0) .

This proves relation (2.10).

In order to prove (2.11), observe that by (2.7) and (2.13) (the latter with β = b) we have:

� +∞

0

e−ρtx (t) dt ≤
� +∞

0

e−ρt
{
e−btx0 +

� t

0

eb(s−t) (M + u (s)) ds

}
dt

= x0

� +∞

0

e−(ρ+b)tdt+M

� +∞

0

e−(ρ+b)t

� t

0

ebsdsdt

+

� +∞

0

e−(ρ+b)t

� t

0

ebsu (s) dsdt

=
x0

ρ+ b
+M

� +∞

0

ebs
� +∞

s

e−(ρ+b)tdtds

+
1

ρ+ b

� +∞

0

e−ρtu (t) dt

=
x0

ρ+ b
+

M

ρ (ρ+ b)
+

1

ρ+ b

� +∞

0

e−ρtu (t) dt

≤ x0

ρ+ b
+

M

ρ (ρ+ b)
+
K1 (x0)

ρ+ b

=: K2 (x0) .

2.3 Construction of an optimal control

In this section we prove our main result: the existence of a locally bounded optimal control for

the maximization problem defined in Section 2.1.

Theorem 58. For every x0 ≥ 0, there exists a function u∗ ∈ Λ(x0) such that:

B (x0;u∗) = V (x0).

For every T ∈ N, the function u∗ satisfies:

η (x0, T ) ≤ u∗ ≤ N (x0, T ) a.e. in [0, T ]

for two suitable constants η(x0, T ), N(x0, T ) > 0 not depending on u∗. In particular, u∗ ∈
L∞loc ([0,+∞)).
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Proof. See the end of the Chapter.

According to the methodological description given in the introduction, we split the proof into

three steps.

- First, we set up the main tool of the construction: a pair of uniform localization lemmas that

allow to pass form a given maximizing sequence of controls (un)n∈N (see Definition 52) to a

family of maximizing sequences with certain boundedness properties.

- Secondly, with fixed initial state x0, we interpolate between this family of sequences in order

to obtain a unique locally bounded maximizing sequence (vn,n)n∈N and a candidate optimal

control u∗, linked by the relation: log vn,n ⇀ log u∗ in L1 ([0, T ]) for every T ∈ N.

- Eventually, we prove that B (x0; vn,n)→ B (x0;u∗).

2.3.1 Step one: Uniform localization lemmas

The monotonicity assumption about the dynamics F is used only in the proof of the next two

Lemmas.

Lemma 59. There exists a function N : [0,+∞)
2 → (0,+∞), continuously differentiable and

strictly increasing in the second variable, with the following property.

For every x0 ≥ 0, T > 0 and for every u ∈ Λ (x0) with B(x0;u) sufficiently close to V (x0), there

exists a control ũT ∈ Λ (x0) satisfying:

B
(
x0; ũT

)
≥ B (x0;u)

ũT = u ∧N (x0, T ) a. e. in [0, T ] .

In particular, the norm
∥∥ũT∥∥

L∞([0,T ])
is bounded above by a quantity which does not depend on

the initial control u.

Further, the state x
(
·; ũT , x0

)
associated with the control ũT satisfies:

0 ≤ x
(
·; ũT , x0

)
≤ x (·;u, x0) in [0,+∞). (2.15)

Eventually, the bound function N satisfies, for every x0 ≥ 0:

lim
T→+∞

Te−ρT logN (x0, T ) = 0. (2.16)

Proof. Fix x0, T ≥ 0. The equation

log β + βb0 = −Tb0, β > 0 (2.17)
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has a unique solution, which is strictly less than 1. Call this solution βT , and define

N (x0, T ) := K (x0)β−2
T e2ρ(T+βT ), (2.18)

where K (x0) = K1 (x0) ∨ 1 and K1 (x0) is the constant introduced in Proposition 57.

Now fix u ∈ Λ (x0) with B(x0;u) large enough, so that, in particular, relation (2.12) holds for

such u, and consider the case T > 0.

If u ≤ N (x0, T ) almost everywhere in [0, T ], then set ũT := u. In this case there is nothing to

show about u, and we can pass directly to the last part of the proof, where the properties of the

function N(x0, ·) are established.

If there exists a non-negligible subset of [0, T ] in which u > N (x0, T ) then define

Ĩ :=

� T

0

[u (t)− u (t) ∧N (x0, T )] dt

ũT := u ∧N (x0, T ) · χ[0,T ] +
(
u+ Ĩ

)
· χ(T,T+βT ] + u · χ(T+βT ,+∞).

As an immediate consequence of the definition of admissibility, ũT ∈ Λ (x0), since u ∈ Λ (x0)

and N (x0, T ) > 0.

First we prove that relation (3.18) holds. Clearly x
(
·; ũT , x0

)
≥ 0, by (2.5) and the admissibility

of ũT . For simplicity of notation we set N = N (x0, T ), x̃T = x
(
·; ũT , x0

)
and x = x (·;u, x0).

We have x̃T ≤ x in [0, T ], by Remark 55.

Fix t ∈ (T, T + βT ], and set h := h (x̃T , x), like in Remark 54. Hence, by (2.9):

x̃T (t)− x (t) =

� T

0

exp

(� t

s

h(τ)dτ

)
(u (s) ∧N − u (s)) ds

+Ĩ

� t

T

exp

(� t

s

h(τ)dτ

)
ds.

Since h ≥ −b0, the first addend is estimated in the following way:

� T

0

exp

(� t

s

h(τ)dτ

)
(u (s) ∧N − u (s)) ds ≤

� T

0

e(s−t)b0 (u (s) ∧N − u (s)) ds

≤ e−tb0
� T

0

(u (s) ∧N − u (s)) ds

≤ −Ĩe−(T+βT )b0 .

Since h ≤ 0, the second addend is estimated from above by ĨβT .

Thus we obtain:

x̃T (t)− x (t) ≤ Ĩ
(
βT − e−(T+βT )b0

)
,
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and the last quantity is zero, by definition of βT .

This implies that x̃T ≤ x also in (T + βT ,+∞), again by Remark 55. Hence, relation (3.18)

holds.

Now we estimate the “logarithmic” part of the difference between B
(
x0; ũT

)
and B (x0;u). By

the concavity of the logarithm, we have:

� +∞

0

e−ρt
(
log ũT (t)− log u (t)

)
dt

=

� T

0

e−ρt {log (u (t) ∧N)− log u (t)} dt

+

� T+βT

T

e−ρt
{

log
(
u (t) + Ĩ

)
− log u (t)

}
dt

≥
� T

0

e−ρt (u (t) ∧N)
−1 {u (t) ∧N − u (t)} dt

+Ĩ

� T+βT

T

e−ρt
(
u (t) + Ĩ

)−1

dt

=
1

N

� T

0

e−ρt {u (t) ∧N − u (t)} dt

+Ĩ

� T+βT

T

e−ρt
(
u (t) + Ĩ

)−1

dt

≥ 1

N

� T

0

(u (t) ∧N − u (t)) dt

+Ĩ

� T+βT

T

e−ρt
(
u (t) + Ĩ

)−1

dt

= Ĩ

(� T+βT

T

e−ρt
(
u (t) + Ĩ

)−1

dt− 1

N

)
. (2.19)

Moreover, by Jensen’s inequality:

� T+βT

T

e−ρt
(
u (t) + Ĩ

)−1

dt ≥ e−ρ(T+βT )

� T+βT

T

(
u (t) + Ĩ

)−1

dt

≥ β2
T e
−ρ(T+βT ) 1� T+βT

T

(
u (t) + Ĩ

)
dt

≥ β2
T e
−ρ(T+βT ) 1� T+βT

T
u (t) dt+ Ĩ

≥ β2
T e
−ρ(T+βT ) 1� T+βT

0
u (t) dt

where the penultimate inequality holds since βT < 1, while the last inequality uses the fact that
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Ĩ ≤
� T

0
u(t)dt.

Now by Proposition 57 (formula (2.12)) we can complete the latter estimate in the following

way:

� T+βT

T

e−ρt
(
u (t) + Ĩ

)−1

dt ≥ K (x0)
−1
β2
T e
−2ρ(T+βT )

=: α (x0, T ) . (2.20)

Observe that, by definition, N (x0, T ) = α (x0, T )
−1

. Hence, joining (3.21) with (2.20) leads to

� +∞

0

e−ρt
(
log ũT (t)− log u (t)

)
dt ≥ Ĩ

(
α (x0, T )− 1

N (x0, T )

)
= 0. (2.21)

This implies, by (3.18):

B
(
x0; ũT

)
− B (x0;u) =

� +∞

0

e−ρt
(
log ũT (t)− log u (t)

)
dt

−c
� +∞

0

e−ρt
{
x̃2
T (t)− x2 (t)

}
dt

≥ 0.

We now prove the regularity and monotonicity of N (x0, T ) in T .

Define f(x) := log x+ b0x for every x > 0. This is a smooth, strictly increasing function which

maps (0,+∞) onto R; hence it is - in particular - a monotone C1-diffeomorphism. Let φ be the

inverse of f ; then the function T → φ (−Tb0) belongs to C1(R). Recall that, by definition, βT is

the unique solution of equation (3.16): this means that βT = φ (−Tb0) for every T ≥ 0, which

implies N(x0, ·) ∈ C1[0,+∞), by (3.17).

With regard to the monotonicity of N(x0, ·), observe first that the function T → T + βT is

strictly increasing. Indeed, we have for every T ≥ 0:

d

dT
(T + βT ) = 1− b0φ′ (−Tb0) = 1− b0

f ′ (βT )
= 1− b0βT

1 + b0βT
> 0.

Moreover, βT is a strictly decreasing function of T . This shows that N (x0, ·) is strictly increasing

since it is the product of positive strictly increasing functions.

Finally we prove relation (3.15). Observe that:

βT ∼ e−Tb0 for T → +∞. (2.22)
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Indeed, with f defined as before, we have:

lim
x→0+

f (x)

log x
= 1.

Hence φ (y) ∼ ey for y → −∞ and βT = φ (−Tb0) ∼ e−Tb0 for T → +∞.

It follows from (2.22) and (3.17), that:

Te−ρT logN (x0, T ) = Te−ρT logK (x0) + Te−ρT log
(
β−2
T

)
+2ρTe−ρT (T + βT )

∼ Te−ρT log
(
β−2
T

)
∼ 2T 2e−ρT b0 for T → +∞.

This shows that (3.15) holds.

Lemma 60. There exists a function η : [0,+∞)
2 → (0,+∞), smooth and strictly decreasing in

the second variable, with the following properties:

i) for every x0, T ≥ 0:

η (x0, T ) < N (x0, T ) ,

where N is the function defined in Lemma 59;

ii) for every x0 ≥ 0 and every T ≥ 1, if u ∈ Λ (x0) and B(x0;u) is large enough, there exists

uT ∈ Λ (x0) such that

B
(
x0;uT

)
≥ B (x0;u)

uT = (u ∧N (x0, T )) ∨ η (x0, T ) a. e. in [0, T ] .

In particular the norm
∥∥log uT

∥∥
L∞([0,T ])

is bounded above by a quantity which does not depend

on u.

iii) For every x0 ≥ 0:

lim
T→+∞

Te−ρT log η (x0, T ) = 0. (2.23)

Proof. In order to define the function η, we observe beforehand that, for every x0 ≥ 0, there

obviously exists a number L (x0) > ρ such that

eL(x0)−ρ − 2cρ−1e−L(x0) ≥ 2cK2 (x0) , (2.24)

where K2(x0) is the positive constant introduced in Proposition 57.

A simple computation shows that the function T → e(L(x0)−ρ)T − 2cρ−1Te−L(x0)T is increasing
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if

L (x0) > ρ+
2c

ρ
. (2.25)

Now choose L (x0) satisfying (2.24) and (2.25) and define

η (x0, T ) := e−L(x0)T .

The properties in i) and iii) are immediate consequences of the definitions of η and N . For the

first property, remind relations (3.16) and (3.17), from which it follows that N (x0, T ) > 1.

We now prove that the property in ii) is satisfied by η.

By the choice of L(x0) we have:

e(L(x0)−ρ)T − 2cρ−1Te−L(x0)T − 2cK2 (x0) ≥ 0 ∀x0 ≥ 0, T ≥ 1. (2.26)

Fix x0 and u as in the hypothesis. This means in particular that relation (2.11) holds for

the trajectory x (·;x0, u). Fix also T ≥ 1 and take ũT as in Lemma 59. Define uT := ũT if

ũT ≥ η (x0, T ) almost everywhere in [0, T ], and

uT :=
(
ũT ∨ η (x0, T )

)
χ[0,T ] + ũTχ(T,+∞)

if there exists a subset of [0, T ] of positive measure where ũT < η (x0, T ). In this case define also

I :=

� T

0

[
ũT (s) ∨ η − ũT (s)

]
ds.

We show that

B
(
x0;uT

)
− B

(
x0; ũT

)
≥ 0,

and the conclusion will follow from Lemma 59.

We provide two different estimates of the quantity x (·;x0, uT )− x (·;x0, ũT ).

Set, for simplicity of notation: xT = x (·;x0, uT ), x̃T = x (·;x0, ũT ), h = h (xT , x̃T ) (see Remark

54), and η = η (x0, T ). Remembering that h ≤ 0, we have by (2.9), for every t ∈ [0, T ]:

xT (t)− x̃T (t) =

� t

0

e
� t
s
h(τ)dτ [uT (s)− ũT (s)

]
ds

≤
� T

0

e
� t
s
h(τ)dτ [ũT (s) ∨ η − ũT (s)

]
ds

≤ I.
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The same estimate holds for t > T , since uT = ũT in (T,+∞). Hence:

xT − x̃T ≤ I in [0,+∞) . (2.27)

Moreover, since η > 0:

I =

� T

0

[
ũT (s) ∨ η − ũT (s)

]
ds

=

�
[0,T ]∩{ũT≤η}

[
η − ũT (s)

]
ds

≤ Tη.

Hence

xT − x̃T ≤ Tη in [0,+∞) . (2.28)

By (2.27) and (2.28), using the convexity relation x2 − y2 ≤ 2x (x− y), we obtain:

c

� +∞

0

e−ρt
[
x2
T (t)− x̃2

T (t)
]

dt ≤ 2c

� +∞

0

e−ρtxT (t) [xT (t)− x̃T (t)] dt

≤ 2cI

� +∞

0

e−ρtxT (t) dt

= 2cI

� +∞

0

e−ρt [xT (t)− x̃T (t)] dt

+2cI

� +∞

0

e−ρtx̃T (t) dt

≤ 2cITη

� +∞

0

e−ρtdt+ 2cI

� +∞

0

e−ρtx (t;x0, u) dt

≤ I

(
2
c

ρ
Tη + 2cK2 (x0)

)
,

where we also used (3.18) and (2.11) in the second-to-last and last inequality, respectively.

Moreover:

� +∞

0

e−ρt
(
log uT (t)− log ũT (t)

)
dt =

� T

0

e−ρt
(
log
(
ũT (t) ∨ η

)
− log ũT (t)

)
dt

≥
� T

0

e−ρt
1

ũT (t) ∨ η
(
ũT (t) ∨ η − ũT (t)

)
dt

=
1

η

� T

0

e−ρt
(
ũT (t) ∨ η − ũT (t)

)
dt

≥ e−ρT

η
I.
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Joining the last two estimates leads to:

B
(
x0;uT

)
− B

(
x0; ũT

)
=

� +∞

0

e−ρt
(
log uT (t)− log ũT (t)

)
dt

−c
� +∞

0

e−ρt
[
x2
T (t)− x̃2

T (t)
]

dt

≥ I

(
e−ρT

η (x0, T )
− 2

c

ρ
Tη (x0, T )− 2cK2 (x0)

)

= I
(
e(L(x0)−ρ)T − 2cρ−1Te−L(x0)T − 2cK2 (x0)

)
≥ 0,

where the last inequality holds by (3.13).

2.3.2 Step two: Diagonal procedures

From this point on, the initial state x0 ≥ 0 is to be considered fixed.

The next Lemma applies a special diagonal procedure based on the monotonicity of the functions

N and η introduced in Lemmas 59 and 60.

Lemma 61. There exists a sequence of functions (vn)n∈N ⊆ Λ (x0) and a function v ∈ Λ (x0)

such that:

lim
n→+∞

B (x0; vn) = V (x0) (2.29)

vn ⇀ v in L1 ([0, T ]) ∀T > 0 (2.30)

∀T ∈ N : almost everywhere in [0, T ] : (2.31)

∀n ≥ T : η (x0, T ) ≤ v, vn ≤ N (x0, T )

where N , η are the functions defined in Lemmas 59 and 60 .

Proof. Set B = B (x0; ·) and fix (un)n∈N ⊆ Λ(x0) such that

lim
n→+∞

B (un) = V (x0) .

Define, for every n ∈ N, u1
n as the function obtained by applying Lemma 60 to un, for T = 1.

Then

u1
n = (un ∧N (x0, 1)) ∨ η (x0, 1) a.e. in [0, 1]

B
(
u1
n

)
≥ B (un) .
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Hence, as a consequence of the Dunford-Pettis criterion, there exists a subsequence
(
u1
n

)
n

of(
u1
n

)
n

and a function u1 ∈ L1 ([0, 1]) such that

u1
n ⇀ u1 in L1 ([0, 1]) .

Now apply Lemma 60 to the elements of the sequence
(
u1
n

)
n

in order to obtain a sequence
(
u2
n

)
n

satisfying, for every n ∈ N:

u2
n =

(
u1
n ∧N (x0, 2)

)
∨ η (x0, 2) a.e. in [0, 2]

B
(
u2
n

)
≥ B

(
u1
n

)
.

Take, again by Dunford-Pettis,
(
u2
n

)
n

extracted from
(
u2
n

)
n

and a function u2 ∈ L1 ([0, 2]) such

that

u2
n ⇀ u2 in L1 ([0, 2]) .

Iterating this process we define two families of sequences of functions:

{(
uTn
)
n
|T ∈ N

}
,
{(
uTn
)
n
|T ∈ N

}
and a family of integer-valued functions:

{σT |T ∈ N} .

The functions σT : N→ N are strictly increasing with σT ≥ Id, and the following relations hold

for every T, n ∈ N:

uTn = uTσT (n) (2.32)

uTn =
(
uT−1
n ∧N (x0, T )

)
∨ η (x0, T ) a.e. in [0, T ] (2.33)

B
(
uTn
)
≥ B

(
uT−1
n

)
(2.34)

uTn ⇀ uT in L1 ([0, T ]) as n→∞. (2.35)

Fix T, n ∈ N. We have:

ūTn = uTσT (n)

a.e. in [0,T ]
=

(
uT−1
σT (n) ∧N (x0, T )

)
∨ η (x0, T )

a.e. in [0,T−1]
= uT−1

σT (n).

The last equality holds since relations (2.32) and (2.33) applied to the function uT−1
σT (n) imply

uT−1
σT (n) ∈ [η (x0, T − 1) , N (x0, T − 1)] almost everywhere in [0, T − 1], and by Lemmas 59 and

60 the function η (x0, ·) is decreasing and the function N (x0, ·) is increasing.
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Thus, for every n ∈ N, there exists a full measure subset of [0, T−1] in which ūTn coincides with an

element of the sequence (ūT−1
m )m∈N. Since a numerable intersection of full measure sets is a full

measure set, and remembering the properties of the function σT , we deduce that the sequence(
uTn
)
n

coincides - almost everywhere in [0, T − 1] - with a sequence that is extracted from(
uT−1
n

)
n
. This implies uT−1 = uT almost everywhere in [0, T − 1], by the essential uniqueness

of the weak limit.

Hence, defining

∀t ≥ 0 : v (t) := ubtc+1 (t)

we obtain v = uT almost everywhere in [0, T ], for every T ∈ N. Consequently:

∀T ∈ N : uTn ⇀ v in L1 [0, T ] as n→∞, (2.36)

by (2.35). Repeating the previous argument, we see that, for every T, n ∈ N and 1 ≤ j ≤ T − 2:

ūTn
a.e. in [0,T−1]

= uT−1
σT (n)

a.e. in [0,T−2]
= uT−2

σT−1◦σT (n)

. . .
a.e. in [0,T−j]

= uT−jσT−j+1◦···◦σT (n).

Observe that
(
uT−jσT−j+1◦···◦σT (n)

)
n

is a subsequence of
(
uT−jn

)
n

since the composition σT−j+1 ◦
· · · ◦ σT is strictly increasing and satisfies

σT−j+1 ◦ · · · ◦ σT (n) ≥ n ∀n ∈ N.

Hence, inverting the quantifiers “∀n ∈ N” and “a.e. in [0, T − j]”, we observe that
(
uTn
)
n

coincides, almost everywhere in [0, T − j], with a subsequence of
(
uT−jn

)
n
, for every T ∈ N and

j = 1, . . . , T − 1.

Define vn := unn for every n ∈ N. The latter assertion implies that, for every fixed T ∈ N, the

sequence (vn)n≥T coincides with a subsequence of
(
uTn
)
n≥1

, almost everywhere in [0, T ]. Hence,

by relations (2.32) and (2.33), (vn)n satisfies:

∀T ∈ N : almost everywhere in [0, T ] :

∀n ≥ T : η (x0, T ) ≤ vn ≤ N (x0, T ) . (2.37)

Moreover:

vn ⇀ v in L1 ([0, T ]) ∀T ∈ N,
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by (2.36).

The extension to every T > 0 is straightforward, and we obtain (2.30). Now fix T > 0; a well

known property of weak convergence implies

lim inf
n→+∞

vn (t) ≤ v (t) ≤ lim sup
n→+∞

vn (t) for almost every t ∈ [0, T ] . (2.38)

Considering the intersection between the two subsets of [0, T ] where relations (2.37) and (2.38)

hold respectively, we obtain (2.31) also for v.

In order to prove (2.29), observe beforehand that (vn)n ⊆ Λ(x0) by construction: every function

in the sequence is actually obtained by applying Lemma 60. Moreover:

B (vn) = B
(
unσn(n)

)
≥ B

(
un−1
σn(n)

)
= B

(
un−1
σn−1◦σn(n)

)
≥ · · · ≥ B

(
un−2
σn−2◦σn−1◦σn(n)

)
≥ · · · ≥ B

(
u1
σ1◦···◦σn(n)

)
≥ B

(
uσ1◦···◦σn(n)

)
.

Fix ε > 0 and nε ∈ N such that V (x0)−B (un) < ε for n ≥ nε; since σ1 ◦ · · · ◦σm ≥ Id, we have

V (x0)− B (vn) < ε ∀n ≥ nε.

Eventually we prove the admissibility of v. We have established that relation (2.31) holds for v:

this implies that v ∈ L∞loc([0,+∞)) and v > 0 almost everywhere in [0,+∞). In order to prove

that the discounted integral of v is finite, start by observing that, since (vn)n∈N is a maximizing

sequence, relation (2.10) holds for the functions vn with n sufficiently big, i.e.:

� +∞

0

e−ρtvn(t)dt ≤ K1(x0) ∀n ≥ n0.

By (2.30), we have, for every fixed T > 0:

� T

0

e−ρtv(t)dt = lim
n→∞

� T

0

e−ρtvn(t)dt ≤ lim sup
n→∞

� +∞

0

e−ρtvn(t)dt ≤ K1(x0).

Passing to the limit for T → +∞ we obtain:

� +∞

0

e−ρtv(t)dt ≤ K1(x0). (2.39)

At this point we need to take into account the functions log(vn) and extract a subsequence
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(vn,n)n∈N from (vn)n∈N - in order to ensure that the values B (x0; vn,n) have the right asymptotic

behavior. This is done thorugh a “standard” diagonalization.

Lemma 62. Take (vn)n∈N and v as in Lemma 61. There exists a sequence

(vn,n)n∈N, extracted from (vn)n∈N, and a function u∗ ∈ Λ (x0), satisfying:

for every T ∈ N :

log vn,n ⇀ log u∗ in L1 ([0, T ]) (2.40)

η (x0, T ) ≤ u∗ ≤ N (x0, T ) a. e. in [0, T ] . (2.41)

Moreover:

u∗ ≤ v a. e. in [0,+∞). (2.42)

Proof. Observe that the sequence (log vn)n∈N is uniformly bounded in the L∞[0,1] norm, by (2.31).

Precisely, the following relation holds almost everywhere in [0, 1]:

log η (x0, 1) ≤ log vn ≤ logN (x0, 1) ∀n ≥ 1.

Hence by the Dunford-Pettis criterion there exists a function f1 ∈ L1 ([0, 1]) and a sequence

(vn,1)n extracted form (vn) such that

log vn,1 ⇀ f1 in L1 ([0, 1]) .

Again by (2.31), (vn,1)n satisfies, almost everywhere in [0, 2]:

log η (x0, 2) ≤ log vn,1 ≤ logN (x0, 2) ∀n ≥ 2;

therefore there exist f2 ∈ L1 ([0, 2]) and (vn,2)n extracted from (vn,1)n such that

log vn,2 ⇀ f2 in L1 ([0, 2]) ,

and so on. This shows that, for every T ∈ N:

almost everywhere in [0,T] : ∀n ≥ T :

log η (x0, T ) ≤ log vn,n ≤ logN (x0, T )

and there exists a function f ∈ L1
loc ([0,+∞)) such that

log vn,n ⇀ f in L1 ([0, T ]) as n→∞.

Define u∗ := ef ; then relations (2.40) and (2.41) are easy consequences of this definition and of
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the properties of the weak convergence.

We now prove relation (2.42). Fix 0 < t0 < t1 < T and let t0 be a Lebesgue point for both

log u∗ and v. By Jensen’s inequality we have, for every n ∈ N:

� t1
t0

log vn,n (s) ds

t1 − t0
≤ log

(� t1
t0
vn,n (s) ds

t1 − t0

)
;

since (vn,n)n is a subsequence of (vn)n, passing to the limit for n→ +∞ in the previous relation,

we obtain by (2.30) and (2.40):

� t1
t0

log u∗ (s) ds

t1 − t0
≤ log

(� t1
t0
v (s) ds

t1 − t0

)
.

Passing now to the limit for t1 → t0 yields to log u∗ (t0) ≤ log v (t0). By the Lebesgue Point

Theorem, t0 is a generic element of a full measure subset of [0, T ]. This implies (2.42). Hence,

by (2.39): � +∞

0

e−ρtu∗(t)dt ≤
� +∞

0

e−ρtv(t)dt ≤ K1(x0).

This relation, together with (2.41), proves that u∗ ∈ Λ(x0).

2.3.3 Step three: Functional convergence

In this last sub-section, we complete the proof of the existence of an optimal control for the

Shallow Lake problem with monotone dynamics. First we establish that the states associated

with the new maximizing sequence (vn)n converge pointwise to the state associated with the

control v obtained in Lemma 61. Then, relying inter alia on the relation between v and u∗

established in (2.42), we will be able to prove the final step of the main result, i.e. the convergence

B (x0; vn,n)→ B(x0;u∗).

Proposition 63. Let (vn)n and v be as in Lemma 61. Then

x(·;x0, vn)→ x(·;x0, v) pointwise in [0,+∞) .

Proof. Fix T > 0 and set xn := x (·;x0, vn), x := x (·;x0, v). By Remark 55 and by (2.31), the

following uniform estimate holds:

|x− xn| ≤ x (·;x0, N (x0, T )) in [0, T ] , ∀n ≥ T. (2.43)

Now fix t ∈ [0, T ] and n ≥ T . Subtracting the state equation for x from the state equation for
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xn, we obtain, for almost every s ∈ [0, t]:

ẋn (s)− ẋ (s) = F (xn (s))− F (x (s)) + vn (s)− v (s)

= hn (s) [xn (s)− x (s)] + vn (s)− v (s) ,

where hn := h (xn, x) is the function defined in Remark 54.

Integrating both sides of this equation between 0 and t, then taking absolute values yields to:

|xn (t)− x (t)| ≤
� t

0
|hn (s)| |xn (s)− x (s)|ds +

∣∣∣∣� t

0

[vn (s)− v (s)] ds

∣∣∣∣ . (2.44)

Observe that, for every s ∈ [0, t]:

|hn (s)| |xn (s)− x (s)| ≤ b0x (s;x0, N (x0, T )) ,

by Remark 54 and by (2.43).

Since the function on the right hand side of the latter relation obviously belongs to L1 ([0, t]),

passing to the limsup in (2.44) and remembering (2.30), we obtain by the Fatou–Lebesgue

theorem:

lim sup
n→+∞

|xn (t)− x (t)| ≤ lim sup
n→+∞

� t

0

|hn (s)| |xn (s)− x (s)|ds

≤
� t

0

lim sup
n→+∞

|hn (s)| |xn (s)− x (s)|ds (2.45)

≤ b0

� t

0

lim sup
n→+∞

|xn (s)− x (s)|ds.

Hence by Gronwall’s inequality:

lim sup
n→+∞

|xn (t)− x (t)| = 0,

for every t ∈ [0, T ]. This is equivalent to

lim
n→+∞

xn = x in [0, T ] ,

which proves the thesis, since T > 0 is generic.

For completeness sake, we give a proof of the reverse Fatous’s Lemma.

Lemma 64. Let (E, σ, µ) a measure space, fn (n ∈ N) and g µ-measurable functions in E,
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F ⊆ E a full measure set such that:

∀n ∈ N : fn ≤ g in F�
E

gdµ < +∞.

Then

lim sup
n→+∞

�
E

fndµ ≤
�
E

lim sup
n→+∞

fndµ.

Proof. Case I.
�
E
gdµ = −∞. Then

lim sup
n→+∞

�
E

fndµ = −∞

and the thesis is trivially true.

Case II.
�
E
gdµ ∈ − (∞,+∞)

The sequence

an := g − sup
k≥n

fk

satisfies

0 ≤ an ↑ g − lim sup
m→+∞

fm in F.

Hence by Monotone convergence:

�
E

(
g − sup

k≥n
fk

)
dµ =

�
E

andµ ↑
�
E

(
g − lim sup

m→+∞
fm

)
dµ. (2.46)

Observe that the quantities

�
E

(
− sup
k≥n

fk

)
dµ :=

�
E

(
g − sup

k≥n
fk

)
dµ−

�
E

gdµ

�
E

(
− lim sup
m→+∞

fm

)
dµ :=

�
E

(
g − lim sup

m→+∞
fm

)
dµ−

�
E

gdµ

make sense and belong to (−∞,+∞]. It follows from (2.46) that:

lim
n→+∞

�
E

(
− sup
k≥n

fk

)
dµ =

�
E

(
− lim sup
m→+∞

fm

)
dµ, (2.47)

by the assumption on
�
E
gdµ. Hence:

inf
n∈N

�
E

sup
k≥n

fkdµ =

�
E

lim sup
m→+∞

fmdµ.
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Finally, it is a consequence of the definition of sup that

lim sup
m→+∞

�
E

fmdµ ≤ inf
n∈N

�
E

sup
k≥n

fkdµ.

Now with a simple integration by parts we obtain a useful decomposition of the objective

functional:

∀u ∈ Λ (x0) : B (x0; u) =

� +∞

0

e−ρt
(
log u (t)− cx2 (t)

)
dt

=

� +∞

0

e−ρt log u (t) dt− c
� +∞

0

e−ρtx2 (t) dt

= lim
T→+∞

e−ρT
� T

0

log u (s) ds+

ρ

� +∞

0

e−ρt
(� t

0

log u (s) ds− c

ρ
x2 (t)

)
dt

=: lim
T→+∞

e−ρT
� T

0

log u (t) dt+ B1 (x0; u)

where

B1 (x0; u) := ρ

� +∞

0

e−ρt
(� t

0

log u (s) ds− c

ρ
x2 (t;x0,u)

)
dt.

With this notation, we can complete the proof of the main result.

Proof of Theorem 58. Choose u∗ and (vn,n)n∈N as in Lemma 62. We are going to show that

B(x0;u∗) ≥ V (x0). We can assume that relation (2.12) holds for the functions vn,n, for every

n ∈ N. Hence, by Jensen’s inequality, we have for every t > 0:

e−ρt
� t

0

log vn,n (s) ds ≤ te−ρt log

(� t
0
vn,n (s) ds

t

)

≤ te−ρt log

(
K(x0)eρt

t

)
. (2.48)

This implies that limt→+∞ e−ρt
� t

0
log vn,n (s) ds ≤ 0 and consequently

B (x0; vn,n) ≤ B1 (x0; vn,n) . (2.49)

Moreover � +∞

0

te−ρt log

(
K(x0)eρt

t

)
dt < +∞. (2.50)
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Set xn,n := x (·;x0, vn,n), x := (·;x0, v) and x∗ := (·;x0, u∗). Relations (2.48) and (2.50) imply

that the hypotheses of Lemma 64 are satisfied for the functions:

fn(t) = e−ρt
(� t

0

log vn,n (s) ds− c

ρ
x2
n,n (t)

)
g(t) = te−ρt log

(
K(x0)eρt

t

)
.

Combining this result with relations (2.49), (2.40) and with Proposition 63 we obtain, since

(xn,n)n is extracted from (xn)n:

V (x0) = lim
n→+∞

B (x0; vn,n) ≤ lim sup
n→+∞

B1 (x0; vn,n)

= ρ lim sup
n→+∞

� +∞

0

e−ρt
(� t

0

log vn,n (s) ds− c

ρ
x2
n,n (t)

)
dt

≤ ρ

� +∞

0

e−ρt lim sup
n→+∞

(� t

0

log vn,n (s) ds− c

ρ
x2
n,n (t)

)
dt

= ρ

� +∞

0

e−ρt
(� t

0

log u∗ (s) ds− c

ρ
x2 (t)

)
dt

≤ ρ

� +∞

0

e−ρt
(� t

0

log u∗ (s) ds− c

ρ
x2
∗ (t)

)
dt

= B1 (x0;u∗) .

The last inequality is a consequence of (2.42) and of Remark 55.

Finally observe that by (2.41), for every t ≥ 0:

te−ρt log η (x0, t+ 1) ≤ e−ρt
� t

0

log u∗ (s) ds ≤ te−ρt logN (x0, t+ 1) ,

which implies that the estimated quantity vanishes for t→ +∞, by (3.15) and (2.23).

Hence B1 (x0;u∗) = B (x0;u∗), and this concludes the proof.
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Chapter 3

Shallow Lake models with

non-monotone dynamics

In this chapter we prove the existence of optimal solutions to Shallow Lake problems with

non-monotone dynamics, under the assumption that the discount exponent in the objective

functional is sufficiently big with respect to the derivative of the dynamics. From the method-

ological viewpoint, such goal requires a significant improvement of the technique introduced in

the previous chapter: a new “discount reduction” procedure is implemented; the localization

procedure is empowered and the interpolation cycle is adapted to the new context.

Again the convexity-concavity hypothesis for the dynamics contained in Assumption 3 is not

essential in order to be able to carry out the proofs and could be replaced by a suitable compar-

ative relation with affine functions (see the final remark in subsection 1.1.2 and the comment at

the end of the introduction to Chapter 2).

This could be seen as a hint of a possible generalizability of the methods here developed to

higher dimensional optimal control problems.

3.1 Definition of the problem and preliminary results.

The dynamics of the problem is described by the following evolution equation in the unknown

x(·):

ẋ (t) = F (x (t)) + u (t) t ≥ 0

x (0) = x0.
(3.1)
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The state equation obeys to the following conditions.

Assumption 3. The dynamics F has the following properties:

i) F ∈ C1 ([0,+∞))

ii) F (0) = 0, lim
x→+∞

F (x) = −∞

iii) F ′+ (0) = −s0 < 0, lim
x→+∞

F ′ (x) = −s∞ ∈ (−∞, 0)

iv) there exists x̄ > 0 such that F is convex in [0, x̄] and concave in [x̄,+∞)

v) a := F ′ (x̄) = max
[0,+∞)

F ′ > 0.

Clearly, the behaviour of F for negative inputs is not relevant for modeling purposes. Never-

theless, a conventional assumption for such domain is technically needed.

Assumption 4. Let −b0 := min{−s0,−s∞}. We assume that F (x) = −b0x for every x < 0.

The last assumption implies that F ′ has discontinuity in 0 when s0 < s∞. Anyway, this

possibility is by no means harmful.

It is a consequence of these assumptions that

−b0 ≤ F ′ ≤ a.

Finally, we assume that the discount factor is sufficiently big with respect to the dynamics of

the problem.

Assumption 5.

ρ > a+ b0.

Remark 65. In the case of the archetypal Shallow Lake model, namely:

F (x) = −bx+
x2

x2 + 1
∀x ≥ 0,

we have b0 = s0 = s∞ = b, a = −b+ 3
√

3
8 > 0 (the non-monotonicity assumption) and ρ > 3

√
3

8 .

The case b ≥ 3
√

3
8 is covered by the previous analysis, without any restriction on the value of ρ.

109



Remark 66. i) The dynamics F : R→ R is Liptschitz-continuous and satisfies:

F (x) ≥ −b0x ∀x ∈ R

F (x) ≥ −bx−M ∀x ∈ R

F (x) ≤ −bx+M ∀x ≥ 0,

for some constants b,M > 0.

ii) The state initial value problem (3.1) - for fixed x0 ≥ 0 and u ∈ L1
loc ([0,+∞)) - admits a

unique solution, which we denote by x (·;x0, u).

The set of the admissible controls is:

Λ (x0) =

{
u ∈ L1

loc ([0,+∞))
∣∣∣u > 0 a.e. in [0,+∞) and

� +∞

0

e−ρtu (t) dt < +∞
}
,

and the objective functional, defined for u ∈ Λ (x0), is:

B (x0;u) :=

� +∞

0

e−ρt
[
log u (t)− cx2 (t;x0, u)

]
dt.

Remark 67. The objective functional is not identically equal to −∞. As a trivial example,

consider the control u ≡ 1 ∈ Λ (x0).

Proposition 68. i) For every x0 ≥ 0, u ∈ Λ (x0) and t ≥ 0:

x (t;x0, u) ≥ e−b0t
(
x0 +

� t

0

eb0su (s) ds

)
(3.2)

x (t;x0, u) ≥ e−bt
(
x0 +

� t

0

ebs [u (s)−M ] ds

)
(3.3)

x (t;x0, u) ≤ e−bt
(
x0 +

� t

0

ebs [u (s) +M ] ds

)
. (3.4)

ii) For every x0 ≥ 0 and u1, u2 ∈ Λ (x0):

x (t;x0, u1)− x (t;x0, u2) =

� t

0

exp

(� t

s

h (u1, u2) (τ) dτ

)
(u1 (s)− u2 (s)) ds, (3.5)

where h (u1, u2) : [0,+∞)→ R is a continuous function satisfying:

−b0 ≤ h (u1, u2) (t) ≤ a ∀t ≥ 0.

iii) Let s1, s2 ≥ 0 and u1, u2 ∈ Λ(x0); then for every t0 ≥ 0 and every t1 ∈ (t0,+∞], if u1 ≥ u2
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almost everywhere in [t0, t1] and x (t0; s1, u1) ≥ x (t0; s2, u2), then

x (t; s1, u1) ≥ x (t; s2, u2) ∀t ∈ [t0, t1] . (3.6)

Proof. The proof of i) is a consequence of Remark 66, and is obtained essentially in the same

way as in Remark 53 of the previous Chapter. The proof of point ii) is analogous to that of

Remark 54, and point iii) follows from point ii).

Definition 69. The function V : [0,+∞)→ R such that

V (x0) = sup
u∈Λ(x0)

B (x0;u) ∀x0 ≥ 0

is called value function.

A sequence (un)n∈N ⊆ Λ (x0) is said to be maximizing at x0 if

lim
n→+∞

B (x0;un) = V (x0) .

A control u∗ ∈ Λ (x0) is optimal at x0 if

B (x0;u∗) = V (x0) .

The proof of the boundedness of the value function is the same as in the monotone case. We

state the result for completeness’ sake.

Proposition 70. i) The value function satisfies:

V (x0) ≤ 1

ρ
log

(
ρ+ b0√

2ec

)
∀x0 ≥ 0,

where e is the Napier’s constant.

ii) For every x0 ≥ 0, there exists a constant K (x0) > 0 such that, for every u ∈ Λ (x0) with

B (x0;u) ≥ V (x0)− 1:

� +∞

0

e−ρtu (t) dt,

� +∞

0

e−ρtx (t;x0, u) dt ≤ K (x0) .

3.2 Proof of the main result

In this section we give a proof of the existence of an optimal control for any Shallow Lake type

problem with non monotone dynamics F . Namely, we will prove the following theorem.
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Theorem 71. For every x0 > 0, the optimal control problem for the class Λ (x0) defined in

Section 3.1 admits a solution u∗ ∈ L∞loc ([0,+∞)). Precisely, the optimum satisfies, for every

T > 0:

η (x0, T ) ≤ u∗ ≤ N (x0, T ) a.e. in [0, T ] ,

where η (x0, T ) and N (x0, T ) are strictly positive quantities not depending on u∗.

The proof will be divided into various lemmas forming two subsections, following the scheme

outlined in the introduction.

3.2.1 Discount reduction and localization

In this subsection we will see how it is possible to improve a given admissible control (in the

sense of the objective functional B) in such way that the control obtained is bounded in a given

time interval [0, T ], by a quantity that does not depend on the initial control. To perform

this localization procedure, we need that the input control belongs to a special class of functions

whose integral in [0,+∞) “bears” a bigger discount factor (i.e. a less negative discount exponent)

than a general admissible control. The first lemma of this subsection ensures that such an input

control can be chosen: we call this procedure discount reduction.

Both the localization procedure and the discount reduction procedure will preserve the values

of the given control at [0, T ], as well as the property of being “sufficiently close” to optimality.

Definition 72. i) For every x0 > 0, the quantities T (x0), γ (x0) are defined as follows:

If 2b0+ρ
2cx0

≤ 1, then

T (x0) = 1

γ (x0) = b0.

If 2b0+ρ
2cx0

> 1, then T (x0) is such that T (x0) > 1 and

log

(
2b0 + ρ

2cx0

)
1

T (x0)
+ b0 < ρ− a.

In this case:

γ (x0) := log

(
2b0 + ρ

2cx0

)
1

T (x0)
+ b0.

ii) For every x0 > 0, K1 (x0) = 1
ρ−a−γ(x0) .
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We introduce some additional notation. Herein, K (x0) is the positive constant in point ii)

of Proposition 70, while L1,+
loc ([0,+∞)) denotes the set of all the functions which are locally

integrable and almost everywhere strictly positive in [0,+∞).

We set:

S (x0) =
{
u ∈ Λ (x0)

∣∣∣B (x0;u) ≥ V (x0)− 1
}

Λ0 (x0) =

{
u ∈ L1,+

loc ([0,+∞))
∣∣∣� +∞

0

e−ρtu (t) dt ≤ K (x0) and B (x0;u) > −∞
}

∀T > 0 : ΛT (x0) =

{
u ∈ L1,+

loc ([0,+∞))
∣∣∣� +∞

0

e−(ρ−a)tu (t) dt ≤ eaTK (x0) +K1 (x0)

}
.

Remark 73. By Proposition 70, ii) we have, for every x0 ≥ 0:

S (x0) ⊆ Λ0 (x0) ⊆ Λ (x0)

ΛT (x0) ⊆ Λ (x0) ∀T > 0.

Moreover, S (x0) is “closed under improvement”, in the sense that:

u1 ∈ S (x0) , u2 ∈ Λ (x0) and B (x0;u2) ≥ B (x0;u1) =⇒ u2 ∈ S (x0) .

Lemma 74 (Undiscounting lemma). For every x0 > 0, take T (x0) as in Definition 72. Then,

for every T ≥ T (x0) and every u ∈ Λ0 (x0), there exists a control U (T, u) satisfying:

U (T, u) ∈ ΛT (x0)

U (T, u) = u in [0, T ]

B (x0;U (T, u)) ≥ B (x0;u) .

In particular,

u ∈ S (x0) =⇒ U (T, u) ∈ ΛT (x0) ∩ S (x0) .

Proof. Fix x0 > 0, take γ (x0), T (x0) as in Definition 72, and fix T ≥ T (x0). We distinguish

two cases.

If 2b0+ρ
2cx0

≤ 1 (which implies γ (x0) = b0 and T (x0) = 1), set γT := b0.

If 2b0+ρ
2cx0

> 1, set γT := log
(

2b0+ρ
2cx0

)
1
T + b0. Observe that in any case γT ≤ γ (x0) < ρ − a,

remembering Definition 72.

Now define:

U (T, u) (t) := u (t)χ[0,T ] (t) +
(
u (t) ∧ eγT t

)
χ(T,+∞) (t) .
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We have:

� +∞

0

e−(ρ−a)tU (T, u) (t) dt =

� T

0

eate−ρtu (t) dt+

� +∞

T

e−(ρ−a)tu (t) dt

≤eaTK (x0) +

� +∞

0

e−(ρ−a−γT )tdt

=eaTK (x0) +
1

ρ− a− γT

≤eaTK (x0) +
1

ρ− a− γ (x0)

=eaTK (x0) +K1 (x0) . (3.7)

since u ∈ Λ0 (x0).

Hence, U (T, u) ∈ ΛT (x0) by definition of ΛT (x0). Clearly, also the second required property is

satisfied by U (T, u).

Now we prove that B (x0;U (T, u)) ≥ B (x0;u). For simplicity of notation, call ũ = U (T, u) and

x̃ = x (·;x0, ũ).

Since B (x0;u) > −∞, we can write:

B (x0;U (T, u))− B (x0;u) =

� +∞

0

{
e−ρt [log ũ (t)− log u (t)] + ce−ρt

[
x2 (t)− x̃2 (t)

]}
dt.

(3.8)

Now observe that the non-positive function t→ e−ρt [log ũ (t)− log u (t)] has finite integral (i.e.,

> −∞ ) if and only if
� +∞
T

e−ρt log (u (t) ∨ 1) dt < +∞.

Indeed, setting g (t) := e−ρt log u (t)χ{u>eγT (·)} (t), we have:

� +∞

T

e−ρt log (u (t) ∨ 1) dt =

� +∞

T

e−ρt log u (t)χ{u>1} (t) dt

=

� +∞

T

{
e−ρt log u (t)χ{1<u≤eγT (·)} (t) + g (t)

}
dt.

The function g is non-negative, while the other function inside the integral satisfies:

0 ≤ e−ρt log u (t)χ{1<u≤eγT (·)} (t) ≤ γT te−ρt for a.e. t ≥ 0.
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Hence:

� +∞
T

e−ρt log (u (t) ∨ 1) dt = +∞

⇐⇒� +∞
T

g (t) = +∞.

On the other hand:

� +∞

0

e−ρt [log ũ (t)− log u (t)] dt =

�
(T,+∞)∩{u>eγT (·)}

e−ρt [γT t− log u (t)] dt

=

� +∞

T

{
γT te

−ρtχ{u>eγT (·)} (t)− g (t)
}

dt.

Since

0 ≤ γT te−ρtχ{u>eγT (·)} (t) ≤ γT te−ρt for a.e. t ≥ 0,

we have:

� +∞
0

e−ρt [log ũ (t)− log u (t)] dt = −∞

⇐⇒� +∞
T

g (t) = +∞.

Since u ∈ Λ (x0), it is a fact that:

� +∞

T

e−ρt log (u (t) ∨ 1) dt ≤
� +∞

T

e−ρt (u (t) ∨ 1) dt

≤
� +∞

0

e−ρtu (t) dt+
1

ρ
< +∞,

and consequently
� +∞

0
e−ρt [log ũ (t)− log u (t)] dt > −∞. Hence, setting:

I1 =

� +∞

0

e−ρt [log ũ (t)− log u (t)] dt

I2 =c

� +∞

0

e−ρt
[
x2 (t)− x̃2 (t)

]
dt,

we can write:

� +∞

0

{
e−ρt [log ũ (t)− log u (t)] + ce−ρt

[
x2 (t)− x̃2 (t)

]}
dt = I1 + I2. (3.9)
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Now we give estimates for I1 and I2. We have

I1 =

� +∞

T

e−ρt
[
log
(
u (t) ∧ eγT t

)
− log u (t)

]
dt

≥
� +∞

T

e−ρt

u (t) ∧ eγT t
[
u (t) ∧ eγT t − u (t)

]
dt

=

� +∞

T

e−(ρ+γT )t
[
u (t) ∧ eγT t − u (t)

]
dt, (3.10)

and

I2 = c

� +∞

0

e−ρt
[
x2 (t)− x̃2 (t)

]
dt

≥ 2c

� +∞

0

x̃ (t) e−ρt [x (t)− x̃ (t)] dt

= 2c

� +∞

T

x̃ (t) e−ρt [x (t)− x̃ (t)] dt.

By Proposition 68, i) and ii), we have for every t ≥ T :

x̃ (t) ≥ e−b0tx0;

x (t)− x̃ (t) =

� t

0

e
� t
s
h(τ)dτ [u (s)− ũ (s)] ds

=

� t

T

e
� t
s
h(τ)dτ [u (s)− u (s) ∧ eγT s] ds

≥
� t

T

e−b0(t−s) [u (s)− u (s) ∧ eγT s] ds.

Thus we obtain:

I2 ≥ 2cx0

� +∞

T

e−(b0+ρ)t

� t

T

e−b0(t−s) [u (s)− u (s) ∧ eγT s] dsdt

= 2cx0

� +∞

T

eb0s [u (s)− u (s) ∧ eγT s]
� +∞

s

e−(2b0+ρ)tdtds

=
2cx0

2b0 + ρ

� +∞

T

e−(ρ+b0)s [u (s)− u (s) ∧ eγT s] ds. (3.11)

Focusing on the last integral in (3.10),we note that

� +∞

T

e−(ρ+γT )t
[
u (t) ∧ eγT t − u (t)

]
dt > −∞

by the admissibility of u.
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Hence:

� +∞

T

(
2cx0

2b0 + ρ
e−b0t − e−γT t

)
e−ρt

[
u (t)− u (t) ∧ eγT t

]
dt

=

� +∞

T

e−(ρ+γT )t
[
u (t) ∧ eγT t − u (t)

]
dt

+
2cx0

2b0 + ρ

� +∞

T

e−(ρ+b0)t
[
u (t)− u (t) ∧ eγT t

]
dt

≤I1 + I2. (3.12)

Going back to the definition of γT , we wee that the function t →
(

2cx0

2b0+ρe
−b0t − e−γT t

)
is

everywhere-non-negative. Indeed, if 2cx0

2b0+ρ ≥ 1, then γT = b0. If, on the contrary, 2cx0

2b0+ρ < 1,

then γT = log
(

2b0+ρ
2cx0

)
1
T + b0. By a straightforward computation, this implies, for every t ≥ T :

γT ≥ log

(
2b0 + ρ

2cx0

)
1

t
+ b0

⇐⇒ 2cx0

2b0 + ρ
e−b0t − e−γT t ≥ 0.

By (3.12) this implies I1 + I2 ≥ 0; hence, by (3.8) and (3.9):

B (x0;U (T, u))− B (x0;u) ≥ 0.

Remark 75. If u ∈ ΛT (x0) then

� +∞

0

e−(ρ−a)tx (t) dt ≤ K2 (x0) eaT +K3 (x0) ,

for two suitable constants K2 (x0) ,K3 (x0) > 0.

Indeed, since x (t) ≤ x0 + M
b + e−bt

� t
0
ebsu (s) ds for every t ≥ 0 by (3.4), we have:

� +∞

0

e−(ρ−a)tx (t) dt ≤
(
x0 +

M

b

)
1

ρ− a
+

� +∞

0

e−(ρ−a)te−bt
� t

0

ebsu (s) dsdt

=

(
x0 +

M

b

)
1

ρ− a
+

1

ρ+ b− a

� +∞

0

e−(ρ−a)tu (t) dt

≤ K (x0)

ρ+ b− a
eaT +K1 (x0) +

(
x0 +

M

b

)
1

ρ− a

=: K2 (x0) eaT +K3 (x0) .
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Lemma 76 (Lower localization lemma). There exists a function η : [0,+∞)
2 → (0,+∞),

continuous and strictly decreasing in the second variable, with the following property:

for every x0 ≥ 0, T > 0, and every u ∈ ΛT (x0) such that B (x0;u) > −∞, there exists

uT ∈ Λ (x0) satisfying:

uT = u ∨ η (x0, T ) a. e. in [0, T ]

B (x0;uT ) ≥ B (x0;u) .

In particular, log uT is bounded below by a quantity which does not depend on u, almost every-

where in [0, T ].

Proof. First, take the constantsK2 (x0), K3 (x0) as in Remark 75. Then setK4 (x0) := K3 (x0)+
2M
b

1
ρ−a , and define ε (x0) and L (x0) in the following way:

ε (x0) =
1

2c [K2 (x0) +K4 (x0)]

L (x0) > ρ+ a+ 2cε (x0)K2 (x0) a+
2cε (x0)

2

ρ− a
.

Without loss of generality we can assume ε (x0) < 1. Now we define the function η and an

auxiliary function ζ. For every, T ≥ 0:

η (x0, T ) := ε (x0) e−L(x0)T

ζ (x0, T ) :=
e−ρT

2cη (x0, T )
− Tη (x0, T )

ρ− a
−K2 (x0) eaT −K4 (x0) .

An easy but boring computation shows that

ζ (x0, T ) ≥ 0 ∀T ≥ 0. (3.13)

Indeed, the choice of ε (x0) is such that ζ (x0, 0) = 0, and the choice of L (x0) makes sure that
d

dT ζ (x0, T ) > 0 for T ≥ 0.

Now fix T > 0, x0 ≥ 0 and take u ∈ ΛT (x0). If u ≥ η (x0, T ) almost everywhere in [0, T ], then

choose uT := u and there is nothing more to prove.

If, on the contrary, there exists a subset of [0, T ] of positive measure where u < η (x0, T ), then

define:

uT := (u ∨ η (x0, T ))χ[0,T ] + uχ(T,+∞)

J :=

� T

0

[u (s) ∨ η (x0, T )− u (s)] ds.
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Observe that

0 < J =

�
[0,T ]∩{u<η}

[u (s) ∨ η (x0, T )− u (s)] ds

≤ Tη (x0, T ) . (3.14)

Set for simplicity of notation xT = x (·;x0, uT ), x = x (·;x0, u), η = η (x0, T ).

We shall give two different estimates for the difference xT − x, one “multiplicative”, and one

“additive” in J . By (3.5), we obtain for every t ≥ 0:

xT (t)− x (t) =

� T

0

e
� t
s
h(uT ,u)(τ)dτ [uT (s)− u (s)] ds

≤ Jeat.

By (3.3), (3.4) and (3.14) it follows that, for every t ≥ 0:

xT (t)− x (t) ≤
� t

0

e−b(t−s) [uT (s)− u (s) + 2M ] ds

≤ 2M

b
+ J ≤ 2M

b
+ Tη.

Moreover, since u ∈ ΛT (x0), by Remark 75 we have:

� +∞

0

e−(ρ−a)tx (t) dt ≤ K2 (x0) eaT +K3 (x0) .

The last three inequalities lead to the following estimate:
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c

� +∞

0

e−ρt
[
x2
T (t)− x2 (t)

]
dt ≤ 2c

� +∞

0

e−ρtxT (t) [xT (t)− x (t)] dt

≤ 2cJ

� +∞

0

e−(ρ−a)txT (t) dt

= 2cJ

� +∞

0

e−(ρ−a)t [xT (t)− x (t)] dt

+2cJ

� +∞

0

e−(ρ−a)tx (t) dt

≤ 2cJ

(
2M

b
+ Tη

) � +∞

0

e−(ρ−a)tdt

+2cJ
[
K2 (x0) eaT +K3 (x0)

]
= 2cJ

[(
2M

b
+ Tη

)
1

ρ− a
+K2 (x0) eaT +K3 (x0)

]
= 2cJ

[
Tη

1

ρ− a
+K2 (x0) eaT +K3 (x0) +

2M

b

1

ρ− a

]
=: 2cJ

[
Tη

1

ρ− a
+K2 (x0) eaT +K4 (x0)

]
,

in which we used the convexity relation x2 − y2 ≤ 2x (x− y) at the beginning.

Additionally:

� +∞

0

e−ρt [log uT (t)− log u (t)] dt =

� T

0

e−ρt [log (u (t) ∨ η)− log u (t)] dt

≥
� T

0

e−ρt
u (t) ∨ η − u (t)

u (t) ∨ η
dt

=
1

η

� T

0

e−ρt [u (t) ∨ η − u (t)] dt

≥ J
e−ρT

η
.
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Finally, since B (x0;u) > −∞ by assumption, we deduce from the last two estimates that:

B (x0;uT )− B (x0;u) =

� +∞

0

e−ρt [log uT (t)− log u (t)] dt

−c
� +∞

0

e−ρt
[
x2
T (t)− x (t)

]
dt

≥ J
e−ρT

η
− 2cJ

[
Tη

1

ρ− a
+K2 (x0) eaT +K4 (x0)

]
= 2cJ

[
e−ρT

2cη (x0, T )
− Tη (x0, T )

ρ− a
−K2 (x0) eaT −K4 (x0)

]
= 2cJζ (x0, T )

≥ 0.

where the last inequality holds by (3.13).

The assumption ρ > a+ b0 will not be used in the following lemma.

Lemma 77 (Upper localization lemma). There exists a function N : [0,+∞) × (0,+∞) →
(0,+∞), continuous and strictly increasing in the second variable, with the following properties:

i) N (x0, T ) > η (x0, T ) for every x0 ≥ 0, T > 0, where η is the function introduced in Lemma

(76).

ii)

lim
T→+∞

Te−ρT logN (x0, T ) = 0. (3.15)

iii) for every x0 ≥ 0, T > 0 and for every u ∈ Λ0 (x0), there exists a control uT ∈ Λ (x0)

satisfying:

B
(
x0;uT

)
≥ B (x0;u)

uT = u ∧N (x0, T ) a. e. in [0, T ] .

In particular, uT is bounded above by a quantity which does not depend on the original control

u, almost everywhere in [0, T ].

Proof. For every fixed T ≥ 0, the equation

log β + (a+ b0)β = −Tb0, β > 0 (3.16)

has a unique solution, which is strictly less than 1. Call this solution βT , and define

N (x0, T ) := K5 (x0)
e2ρ(T+βT )

β2
T

, (3.17)
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where K5 (x0) = K (x0) ∨ 1 and K (x0) is the constant introduced in Proposition 70, ii).

Set f (x) := log x + (a+ b0)x for x > 0; f is a strictly increasing, C1 function with f ′ (x) > 0

for every x > 0. By definition, bT = f−1 (−Tb0) for every T ≥ 0, hence T → βT is a strictly

decreasing, continuously differentiable function defined in [0,+∞) with values in (0, 1).

Hence N (x0, ·) ∈ C1 ([0,+∞)) and N (x0, ·) is strictly increasing. Indeed, the same argument

shows that N (x0, ·) ∈ C∞ ([0,+∞)).

Also the function T → T + βT is strictly increasing. Indeed:

d

dT
(T + βT ) = 1 +

d

dT
f−1 (−Tb0) = 1− b0

f ′ (βT )
= 1− b0

1
βT

+ a+ b0
> 0,

since a > 0.

The property N > 1 > η is an immediate consequence of the definitions.

With regard to the property in (3.15), a simple computation - remembering relation (3.16) applied to βT

- leads to:

logN (x0, T ) = logK1 (x0)
e2ρ(T+βT )

β2
T

= logK1 (x0) + 2ρ (T + βT )− 2 log βT

= logK1 (x0) + 2T (ρ+ b0) + 2βT (ρ+ a+ b0) .

This shows that (3.15) holds, since βT → 0 as T → +∞.

Now fix u ∈ Λ0 (x0). If u ≤ N (x0, T ) almost everywhere in [0, T ], then set uT := u, and the

proof is over.

If there exists a non-negligible subset of [0, T ] in which u > N (x0, T ) then define

I :=

� T

0

e−ρt [u (t)− u (t) ∧N (x0, T )] dt

uT := u ∧N (x0, T ) · χ[0,T ] + (u+ I) · χ(T,T+βT ] + u · χ(T+βT ,+∞).

Obviously uT ∈ Λ (x0), since u ∈ Λ (x0) and N (x0, T ) > 0.

First we prove an ordering relation between the orbits, i.e.:

0 ≤ x
(
·;x0, u

T
)
≤ x (·;x0, u) in [0,+∞) . (3.18)

Clearly x
(
·;x0, u

T
)
≥ 0, by the admissibility of uT . For simplicity of notation we set N =

N (x0, T ), xT = x
(
·;x0, u

T
)

and x = x (·;x0, u).
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The desired relation holds in [0, T ] by point iii) in Proposition 68, since uT ≤ u in [0, T ].

Fix t ∈ (T, T + βT ], and set h := h
(
u, uT

)
, like in point ii) in the same Proposition. Hence:

x (t)− xT (t) =

� T

0

e
� t
s
hdτ (u (s)− u (s) ∧N) ds

−I
� t

T

e
� t
s
hdτds.

The first term in the right hand side of the equality is estimated in the following way:

� T

0

e
� t
s
hdτ (u (s)− u (s) ∧N) ds ≥

� T

0

e−b0(t−s) (u (s) ∧N − u (s)) ds

≥ e−b0(T+βT )

� T

0

e−ρs (u (s) ∧N − u (s)) ds

= Ie−b0(T+βT ) (3.19)

The second term satisfies:

−I
� t

T

e
� t
s
hdτds ≥ −I

� t

T

ea(t−s)ds

= −I
a

(
ea(t−T ) − 1

)
≥ −I

a

(
eaβT − 1

)
≥ −IβT eaβT

Thus we obtain:

x (t)− xT (t) ≥ I
(
e−b0(T+βT ) − βT eaβT

)
, (3.20)

and the last quantity is zero, by definition of βT (relation (3.16)).

This implies that x ≥ xT also in (T + βT ,+∞), again by Proposition 68, iii). Hence, relation

(3.18) holds.
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By the concavity of log, we have:

� +∞

0

e−ρt
[
log uT (t)− log u (t)

]
dt

=

� T

0

e−ρt [log (u (t) ∧N)− log u (t)] dt

+

� T+βT

T

e−ρt [log (u (t) + I)− log u (t)] dt

≥
� T

0

e−ρt
u (t) ∧N − u (t)

u (t) ∧N
dt

+I

� T+βT

T

e−ρt

u (t) + I
dt

=
1

N

� T

0

e−ρt [u (t) ∧N − u (t)] dt

+I

� T+βT

T

e−ρt

u (t) + I
dt

= I

(� T+βT

T

e−ρt

u (t) + I
dt− 1

N

)
. (3.21)

Set µ (T ) = e−ρT

ρ

[
1− e−ρβT

]
, i.e. µ (T ) =

� T+βT
T

e−ρtdt. By Jensen’s inequality we obtain:

� T+βT

T

e−ρt

u (t) + I
dt =µ (T )

� T+βT

T

1

u (t) + I

e−ρt

µ (T )
dt

≥ µ (T )
2

� T+βT
T

e−ρt [u (t) + I] dt

=
µ (T )

2

� T+βT
T

e−ρtu (t) dt+ βT
� T

0
e−ρt [u (t)− u (t) ∧N ]

≥ µ (T )
2

� T+βT
0

e−ρtu (t) dt

≥e
−2ρT

ρ2
·
[
1− e−ρβT

]2
K (x0)

≥e
−2ρ(T+βT )β2

T

K5 (x0)
,

where we have used βT < 1 and
� +∞

0
e−ρtu (t) dt ≤ K (x0).
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The latter relation, together with (3.21), implies:

� +∞

0

e−ρt
[
log uT (t)− log u (t)

]
dt ≥ I

(� T+βT

T

e−ρt

u (t) + I
dt− 1

N

)

≥ I

(
e−2ρ(T+βT )β2

T

K5 (x0)
− 1

N

)
(3.22)

= 0,

by definition of N (relation (3.17)). This implies, by (3.20):

B
(
x0;uT

)
− B (x0;u) =

� +∞

0

e−ρt
[
log uT (t)− log u (t)

]
dt

+c

� +∞

0

e−ρt
[
x2 (t;x0, u)− x2

(
t;x0, u

T
)]

dt

≥ 0.

This concludes the proof.

We can resume the bounding properties of the two localization lemmas in the following

Corollary 78 (Localization Lemma). There exists two functions η,N : [0,+∞)
2 → (0,+∞)

satisfying:

i) for every x0 ≥ 0:

lim
T→+∞

Te−ρT log η (x0, T ) = lim
T→+∞

Te−ρT logN (x0, T ) = 0.

ii)

η < N in [0,+∞)
2
.

iii) For every x0 ≥ 0, the functions η (x0, ·), N (x0, ·) belong to C1 ([0,+∞)) and are, respectively,

strictly decreasing and strictly increasing.

iv) For every x0 ≥ 0, T > 0 and u ∈ S (x0) ∩ ΛT (x0) there exists L (T, u) ∈ Λ (x0) such that

B (x0;L (T, u)) ≥ B (x0;u)

L (T, u) = u ∨ η (x0, T ) ∧N (x0, T ) a. e. in [0, T ] .

In particular L (T, u) ∈ S (x0) and the norm ‖logL (T, u)‖L∞∞[0,T ] is bounded above by a quan-

tity which does not depend on u.

Proof. Points i) and ii) are proven taking η and N like in Lemmas (76) and (77). For point iii),

fix x0, T and u as in the hypothesis. Then we can apply Lemma (76) to u and obtain a function
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uT ∈ S (x0), by Remark 73. In particular uT ∈ Λ0 (x0), thus it is possible to apply Lemma 77

to uT in order to obtain a function (uT )
T ∈ S (x0). Define L (T, u) := (uT )

T
: the properties of

L (T, u) follow from the statements of Lemmas (76) and (77).

3.2.2 Interpolation and convergence of the values

From this point on, the initial state x0 > 0 is to be considered fixed. Consequently, we set

T0 = T (x0) for simplicity of notation, where T (x0) is the quantity introduced in Definition 72.

Lemma 79 (Interpolation Lemma). There exist two functions v, u∗ ∈ Λ (x0) and a sequence

(wn)n∈N ⊆ S (x0) with the following properties.

maximizing property :

lim
n→+∞

B (x0;wn) = V (x0) . (3.23)

convergence properties :

wn ⇀ v in L1 ([0, T ]) ∀T > 0, (3.24)

logwn ⇀ log u∗ in L1 ([0, T ]) ∀T > 0. (3.25)

boundedness property :

∀m ∈ N : almost everywhere in [0, T0 +m] :

∀n ≥ m : η (x0, T0 +m) ≤ fn ≤ N (x0, T0 +m)

for fn = wn, v or u∗, (3.26)

where η, N are the functions defined in Lemmas 76 and 77.

Moreover, the functions u∗ and v are in the following relation:

u∗ ≤ v a.e. in [0,+∞) . (3.27)

Proof. We split the proof into two steps. We will omit the dependence of the functions η and

N on x0, for the sake of simplicity.

Step 1. We define the function v and an auxiliary sequence (vn)n∈N ⊆ Λ0 (x0). We prove that
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v ∈ Λ (x0) and v satisfies:

∀m ∈ N : almost everywhere in [0, T0 +m] :

η (x0, T0 +m) ≤ v ≤ N (x0, T0 +m) , (3.28)

while (vn)n∈N satisfies

∀m ∈ N : almost everywhere in [0, T0 +m] :

∀n ≥ m : η (x0, T0 +m) ≤ vn ≤ N (x0, T0 +m) , (3.29)

lim
n→+∞

B (x0; vn) = V (x0) . (3.30)

Then we will prove that v and (vn)n are tied by the relation:

vn ⇀ v in L1 ([0, T ]) ∀T > 0; (3.31)

this will conclude the first step.

Consider a sequence (un)n∈N ⊆ Λ (x0) such that

lim
n→+∞

B (x0;un) = V (x0) .

We can assume that (un)n∈N ⊆ S (x0); thus in particular (un)n∈N ⊆ Λ0 (x0), by Remark 73.

We want to apply the Localization Lemma 78, starting from (un)n∈N, in order to gain some

compactness property. Actually, such lemma requires that the input control belongs to some

ΛT (x0) - and this will lead us to use the Undiscounting Lemma 74. So the procedure will follow

the scheme:

... ↪→ undiscounting ↪→ localization ↪→ extraction of a convergent subsequence ↪→ undiscounting...

where each new cycle refers to a bigger interval.

The key point is that both the undiscounting procedure and the localization procedure preserve

the values of the function at smaller intervals, as well as the property of being in S (x0). To see

this, fix u ∈ S (x0) and assume that, for a certain m ∈ N:

η (T0 +m) ≤ u ≤ N (T0 +m) a.e. in [0, T0 +m] . (3.32)

Using the notation of Lemmas 74 and 78, we see that the control U (T0 +m+ 1, u) is well-

defined (since u ∈ Λ0 (x0)) and belongs to ΛT0+m+1 (x0)∩S (x0) (since u ∈ S (x0)). Hence, also
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the control L (T0 +m+ 1,U (T0 +m+ 1, u)) is well-defined and belongs to S (x0). We have,

almost everywhere in [0, T0 +m]:

L (T0 +m+ 1,U (T0 +m+ 1, u))

= U (T0 +m+ 1, u) ∨ η (T0 +m+ 1) ∧N (T0 +m+ 1)

= u ∨ η (T0 +m+ 1) ∧N (T0 +m+ 1)

= u. (3.33)

The first equality holds by definition of the operator L, the second is a consequence of the

definition of the operator U , and the third follows from (3.32) and the monotonicity of η and N .

We define recursively: a family of sequences
{

(umn )n∈N | m ∈ N
}

, a family of functions {um | m ∈ N}
such that um ∈ L1 ([0, T0 +m]), and a family of functions {σm | m ∈ N} such that σm : N→ N,

σm is strictly increasing. Recall that, by the Dunford-Pettis criterion, a sequence (umn )n∈N

which is bounded in L∞ ([A,B]) (thus, in L1 ([A,B])) admits a subsequence
(
umσ(n)

)
n∈N

weakly

converging in L1 ([A,B]).

Call Σ the class of all the strictly increasing functions σ : N→ N (thus such that σ ≥ Id).

Define:

u0
n = L (T0,U (T0, un)) ∀n ∈ N

σ0 ∈ Σ, u0 ∈ L1 ([0, T0]) s.t. u0
σ0(n) ⇀ u0 in L1 ([0, T0])

∀m ∈ N :

um+1
n = L

(
T0 +m+ 1,U

(
T0 +m+ 1, umσm(n)

))
∀n ∈ N

σm+1 ∈ Σ, um+1 ∈ L1 ([0, T0 +m+ 1]) s.t. um+1
σm+1(n)

n→∞
⇀ um+1 in L1 ([0, T0 +m+ 1])

We proceed to define v and (vn)n∈N. For every m,n ∈ N we have, by construction:

umσm(n) = L
(
T0 +m,U

(
T0 +m,um−1

σm−1◦σm(n)

))
,

and this implies umσm(n) ∈ S (x0) and umσm(n) (t) ∈ [η (T0 +m) , N (T0 +m)] for almost every

t ∈ [0, T0 +m]. Hence, by the implication (3.32) =⇒ (3.33), we have:

um+1
σm+1(n) = L

(
T0 +m+ 1,U

(
T0 +m+ 1, umσm◦σm+1(n)

))
= umσm◦σm+1(n) a.e. in [0, T0 +m] . (3.34)
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Consequently, for every fixed m ∈ N and every g ∈ L∞ ([0, T0 +m]) we have:

� T0+m

0

g (t)um+1 (t) dt = lim
n→∞

� T0+m

0

g (t)um+1
σm+1(n)dt

= lim
n→∞

� T0+m

0

g (t)umσm◦σm+1(n)dt

= lim
n→∞

� T0+m

0

g (t)umσm(n)dt

=

� T0+m

0

g (t)um (t) dt,

since σm+1 ∈ Σ. This implies

um+1 = um a.e. in [0, T0 +m] .

Since this holds for every m ∈ N, we can define without ambiguities the following function:

v (t) :=

u0 (t) if t ∈ [0, T0]

um (t) if t ∈ [0, T0 +m] for some m ∈ N
∀t ≥ 0.

This definition has two immediate consequences:

v ∈ L1
loc ([0,+∞)) ,

umσm(k)
k→∞
⇀ v in L1 ([0, T0 +m]) ∀m ∈ N. (3.35)

Hence, for every m ∈ N:

� T0+m

0

e−ρtv (t) dt = lim
k→∞

� T0+m

0

e−ρtumσm(k) (t) dt ≤ lim sup
k→∞

� +∞

0

e−ρtumσm(k) (t) dt ≤ K (x0) ,

since umσm(k) ∈ Λ0 (x0). Thus � +∞

0

e−ρtv (t) dt ≤ K (x0) . (3.36)

Again by (3.35), we have

lim inf
k→∞

umσm(k) ≤ v ≤ lim sup
k→∞

umσm(k) a. e. in [0, T0 +m] ,

by a well known property of weak convergence. We have already observed that for every m, k ∈
N, umσm(k) ∈ [η (T0 +m) , N (T0 +m)] almost everywhere in [0, T0 +m]; hence, remembering

that a numerable intersection of full measure sets is a full measure set, we can exchange the
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quantifiers “∀k ∈ N” and “a.e. in [0, T0 +m]” . Thus we obtain for every fixed m ∈ N:

almost everywhere in [0, T0 +m] :

lim inf
k→∞

umσm(k) ≥ η (T0 +m)

lim sup
k→∞

umσm(k) ≤ N (T0 +m) .

Combining the last three relations we obtain (3.28). As a consequence of the latter relation,

v ∈ L∞loc ([0,+∞)) and v > 0 almost everywhere in [0,+∞). Hence, remembering (3.36), we

deduce that v ∈ Λ (x0).

We now define (vn)n∈N as the diagonal sequence:

∀n ∈ N : vn := unσn(n).

Clearly (vn)n∈N ⊆ S (x0) , since every function in the range of the operator L has this property.

We prove (3.29). It follows from (3.34) that for every m,n, j ∈ N:

um+j
σm+j(n) = umσm◦···◦σm+j(n) a.e. in [0, T0 +m] .

This is proven by an easy induction on j, and implies that, for every n,m ∈ N, with m ≤ n we

have ( setting j = n−m):

vn = unσn(n) = um+j
σm+j(m+j) = umσm◦···◦σm+j(m+j)

= umσm◦σm+1◦···◦σn(n) a.e. in [0, T0 +m] . (3.37)

Note that this makes sense also if n = m. By definition of
(
umσm(k)

)
k∈N

:

∀m ∈ N : ∀n ≥ m : almost everywhere in [0, T0 +m] :

η (T0 +m) ≤ vn ≤ N (T0 +m) ,

which implies (3.29), by an exchange of quantifiers.

To prove (3.30), start by observing that, for every n ∈ N and every j ∈ [0, n], we can prove by

induction on j that:

B (x0; vn) ≥ B
(
x0;un−jσn−j◦···◦σn(n)

)
,

by definition of
{

(umn )n∈N | m ∈ N
}

, because every application of the operators U , L gives a
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bigger value of the functional B (x0, ·) (see the statements of Lemmas 74 and 78). Hence:

B (x0; vn) ≥ B
(
x0;u0

σ0◦···◦σn(n)

)
≥ B

(
x0;uσ0◦···◦σn(n)

)
.

Relation (3.30) follows from the fact that
(
uσ0◦···◦σn(n)

)
n∈N is extracted from (un)n∈N - since

σ0 ◦ · · · ◦ σn ∈ Σ - and the latter is a maximizing sequence by assumption.

Finally we prove relation (3.31).

By (3.37), we have for every m ∈ N and n ≥ m:

vn = umσm◦τm(n) a.e. in [0, T0 +m] ,

where τm : N→ N is defined as

τm (n) :=

n if n < m+ 1

σm+1 ◦ · · · ◦ σn (n) if n ≥ m+ 1.

Actually τm ∈ Σ for every m ∈ N: indeed, τm is the identity on [0,m] and, for every n ≥ m+ 1:

τm (n) < τm (n+ 1)

⇐⇒

σm+1 ◦ · · · ◦ σn (n) < σm+1 ◦ · · · ◦ σn ◦ σn+1 (n+ 1)

⇐⇒

n < σn+1 (n+ 1) ,

which is certainly true since σn+1 (n+ 1) ≥ n+ 1.

Exchanging again the quantifiers, we obtain that, for every fixed m ∈ N, (vn)n≥m can be

regarded as a sub-sequence of
(
umσm(k)

)
k∈N

in [0, T0 +m], and (3.31) follows from the definitions

of v and
(
umσm(k)

)
k∈N

. This concludes the proof of the first step.

Up to now, we have repeatedly used the fact that every function in the range of the operators

L (T, ·) is bounded below - almost everywhere - in [0, T ] by a positive quantity (depending only

on x0 and T ). Nevertheless, we could have invoked the Dunford-Pettis criterion relying only on

the fact that L (T, u) ∈ [0, N (x0, T )] a.e. in [0, T ] - and for this only one localization lemma

would have been necessary.

Step 2. We define (wn)n∈N as a sub-sequence of (vn)n∈N. In order that the former can be chosen

to satisfy (3.25), it will be crucial that vn ≥ η (x0, T ) a.e. in [0, T ].

Set v0
n := vn for every n ∈ N. By (3.29) , for every T > 0, the sequence

(
log v0

n

)
n∈N is uniformly
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bounded (with respect to n) in the L∞[0,T ] norm. Hence, with a standard diagonalization and

repeatedly using the Dunford-Pettis criterion, we can extract - recursively in m -
(
vm+1
n

)
n∈N

from (vmn )n∈N in such way that

∀m ∈ N : almost everywhere in [0, T0 +m] :

∀n ∈ N : log η (T0 +m) ≤ log vmn ≤ logN (T0 +m) ,

and that

∀m ∈ N : ∃fm ∈ L1 ([0, T0 +m]) :

log vmn
n→∞
⇀ fm in L1 ([0, T0 +m]) .

Define

u∗ := exp

f0χ[0,T0) +
∑
m≥1

fmχ[T0+m−1,T0+m)

 .

By the essential uniqueness of the weak limit, fm+j = fm a.e. in [0, T0 +m] , for every m, j ∈ N.

Hence, for every fixed m ∈ N, fm = log u∗ a.e. in [0, T0 +m]; furthermore, (vnn)n≥m is a sub-

sequence of (vmn )n≥1. Thus

log vnn ⇀ log u∗ in L1 ([0, T0 +m]) .

Define wn := vnn , for every n ∈ N. Then (3.25) holds, and, since (wn)n is a sub-sequence of

(vn)n, also (3.23) and (3.24) hold, by (3.30) and (3.31). For the same reason, relation (3.29)

implies that (3.26) hols for wn. Also the function u∗ satisfies (3.26): with the same argument

used for v, we obtain log η (T0 +m) ≤ log u∗ ≤ logN (T0 +m) almost everywhere in [0, T0 +m]

, for every m ∈ N.

Finally we prove (3.27). Fix 0 < t0 < t1 < T and let t0 be a Lebesgue point for both log u∗ and

v. By Jensen’s inequality we have, for every n ∈ N:

� t1
t0

logwn (s) ds

t1 − t0
≤ log

(� t1
t0
wn (s) ds

t1 − t0

)
.

Passing to the limit for n→ +∞ in the previous relation, we obtain by (3.25) and (3.31):

� t1
t0

log u∗ (s) ds

t1 − t0
≤ log

(� t1
t0
v (s) ds

t1 − t0

)
.

Passing now to the limit for t1 → t0 yields to log u∗ (t0) ≤ log v (t0). By the Lebesgue Point
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Theorem, t0 is a generic element of a full measure subset of [0, T ]; hence (3.27) follows.

In particular
� +∞

0
e−ρtu∗ (t) dt ≤ K (x0); hence, by (3.26), u∗ ∈ Λ (x0).

At this point we can complete the proof of Theorem 71 with the same steps as in the monotone

dynamics case. Proposition 63 holds also in the present case with the same proof up to substi-

tuting b0 with b0 + a. Hence, we have the pointwise convergence of the maximizing sequence of

states to the state controlled by the function v in Lemma 79. The final argument is the same

as in the proof of Theorem 58, with the sequence (wn)n defined in Lemma 79 considered in the

place of the sequence (vn,n)n.
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