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Chapter 1

Topological dynamics

1.1 Basic definitions and first examples

To study the dynamics of a self-map f :X → X means to study the qualitative behavior of the se-
quences {fk(x)} as k goes to infinity when x varies in X, where fk denotes the composition of f with
itself k times.

Definition 1.1.1: A (discrete) dynamical system is a pair (X, f), where X is a topological space and f :X → X
a continuous∗ self-map of X. For k ∈ N we shall always denote by fk the k-th iterate of f , inductively defined
by f0 = idX and fk = f ◦ fk−1. When f is invertible, we denote by f−1 its inverse, and set f−k = (f−1)k.
If x ∈ X, the points fk(x) for k ∈ N are called (forward) iterates of x, and the set {fk(x)}k∈N is the
(forward) orbit of x. When f is invertible, the points f−k(x) for k ∈ N are the backward iterates of x, while
{f−k(x)}k∈N is the backward orbit, and {fk(x)}k∈Z the full orbit.

Definition 1.1.2: Let (X, f) be a dynamical system. A point x ∈ X is fixed if f(x) = x; we denote by Fix(f)
the set of all fixed points of f . If fm(x) = x for some m ≥ 1, we say that x is periodic of period m; the
minimal such m is called the exact period of x. The set of all periodic points of f is denoted by Per (f).
The orbit of a periodic point will be called a cycle.

Definition 1.1.3: Let (X, f) be a dynamical system. A subset Y ⊂ X is f -invariant if f(Y ) ⊆ Y ; completely
f -invariant if f(Y ) ∪ f−1(Y ) ⊆ Y .

Exercise 1.1.1. Show that a subset Y ⊆ X is completely f -invariant if and only if f−1(Y ) = Y .

To warm us up, let us begin discussing a few elementary examples.

Example 1.1.1. Let f : R → R given by f(x) = ax, with a ∈ R. Then clearly 0 is the only fixed point,
fk(x) = akx for any k ≥ 1, and so we can easily describe the behavior of the orbits as follows:

– if |a| < 1 then fn(x)→ 0 for every x ∈ R;
– if |a| > 1 then |fn(x)| → +∞ for every x ∈ R, x 6= 0;
– if a = 1 then f = idR;
– if a = −1 then f2 = idR, and all points are periodic of period (at most) two.

We can describe in a quantitative way how the orbits in the previous example converge (or diverge):

Definition 1.1.4: Let (X, d) be a metric space. We say that a sequence {xk} ⊂ X is exponentially convergent
to p ∈ X if there are C > 0 and 0 ≤ λ < 1 such that

∀k ∈ N d(xk, p) ≤ C λk.

We say that the sequence is exponentially diverging to infinity if there are c > 0 and µ > 1 such that

∀k ∈ N d(xk, q) ≥ c µk

for some q ∈ X; the definition is obviously independent of q.

∗ In a later chapter, when we shall discuss ergodic theory, X will be a measure space and f a measurable
self-map.
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So the orbits in Example 1.1.1 are exponentially converging to the origin if |a| < 1, and exponentially
diverging to infinity if |a| > 1.

Example 1.1.2. Let f : R→ R be given by f(x) = x+c, with c ∈ R∗. Then there are no fixed (or periodic)
points, and fk(x) = x + ck. Therefore we have |fk(x)| → +∞ for all x ∈ R and c ∈ R∗.

This time the orbits are not exponentially diverging to infinity, but they are diverging nonetheless:

Definition 1.1.5: Let (X, d) be a metric space. We say that a sequence {xk} ⊂ X is polynomially diverging
to infinity if there are 0 < c1 < c2 and m1, m2 ∈ N∗ such that

∀k ∈ N c1k
m1 ≤ d(xk, q) ≤ c2k

m2

for some q ∈ X; the definition is obviously independent of q.

So the orbits of the Example 1.1.2 are polynomially diverging to infinity, with m1 = m2 = 1.

Exercise 1.1.2. Study the dynamics of the maps fa,b: R→ R given by fa,b(x) = ax + b with a, b ∈ R∗.

Example 1.1.3. Let f : R → R be given by f(x) = ex; we claim that all orbits are diverging to infinity.
The first observation is that since ex > x then every orbit {fk(x)} is strictly increasing, and thus it is either
converging or diverging to +∞. To prove that the latter holds always, it would suffice to show that every
orbit is unbounded; but there is a cleverer way. Indeed, we have that ex ≥ x + 1; therefore by induction it
follows that fk(x) ≥ x + k, and we are done.

Exercise 1.1.3. Prove that the orbits of f(x) = ex are superexponentially diverging to infinity, that is that
for every x ∈ R and µ > 1 there exists a Cµ > 0 such that |fk(x)| ≥ Cµ µk for all k ∈ N.

Exercise 1.1.4. Let f , g: R→ R be two continuous functions such that g increasing, f ≥ g, and gk(x)→ +∞
for all x ∈ R. Prove that fk(x)→ +∞ for all x ∈ R.

Exercise 1.1.5. Let f : R→ R be a homeomorphism. Prove that:
(i) f is strctly monotone;
(ii) if f has a periodic point of exact period at least 2 then f is decreasing;
(iii) f cannot have periodic points of odd period;
(iv) f cannot have periodic points of exact period greater than 2;
(v) there is an homeomorphism of R with periodic points of exact period 2.

Example 1.1.4. Let f : R→ R given by f(x) = sinx. The function f has an unique (exercise) fixed point,
the origin. Furthermore, the image of f is the interval I = [−1, 1], and so to study the dynamics of f it
suffices to see what happens on I. If x ∈ (0, 1] we have 0 < sin x < x; therefore the orbit {fk(x)} is strctly
decreasing, and thus it converges to a point x∞ ∈ [0, 1]. Now,

f(x∞) = f
(

lim
k→∞

fk(x)
)

= lim
k→∞

fk+1(x) = x∞;

therefore x∞ should be a fixed point, and thus x∞ = 0. In the same way one proves that fk(x) → 0
if x ∈ [−1, 0); therefore all orbits of f converge to the origin.

Remark 1.1.1. The argument used in the previous example shows that if an orbit converges to a point,
this point must necessarily be fixed.

Exercise 1.1.6. Do the orbits of f(x) = sinx converge exponentially to the origin?

Example 1.1.5. Let f : R → R given by f(x) = cos x. Again we have f(R) ⊆ [−1, 1], and again the
function f has a (again exercise) unique fixed point p, belonging to (0, 1). We claim that all orbits of
f coverge exponentially to p. First of all, notice that we actually have f2(R) ⊆ I = [cos(1), 1] ⊂ (0, 1]
and f(I) ⊆ I, and so it suffices to study the orbits starting (and thus staying) in I. Now, the average value
theorem says that for every x ∈ I there exists a y ∈ I such that

cos x− p = cos x− cos p = −(sin y)(x− p);



1.2 Contractions 3

therefore we get
| cos x− p| ≤ λ|x− p|,

where λ = supy∈I | sin y| < 1. By induction we then get

|fk(x)− p| ≤ λk|x− p|,

and thus every orbit converges exponentially to the fixed point p.

In the next section we shall generalize the argument used in this example, showing that the orbits of a
contractions always converge to a (unique) fixed point.

Exercise 1.1.7. Let f : [a, b]→ [a, b] be continuous. Show that f has at least one fixed point.

1.2 Contractions

This section is devoted to the study of one of the easiest example of dynamical system, a contracting map
on a complete metric space.

Definition 1.2.1: A self-map f : X → X of a metric space X is a contraction if there is λ < 1 such that

∀x, y ∈ X d
(
f(x), f(y)

)
≤ λ d(x, y). (1.2.1)

The constant λ = supx6=y

{
d
(
f(x), f(y)

)
/d(x, y)

}
is the contraction costant of f .

We now prove the main result of this section, the contraction principle, which is both simple and
extremely useful.

Theorem 1.2.1: (Contraction principle) Let X be a complete metric space, and let f : X → X be a
contraction. Then f has a unique fixed point p ∈ X, and for every x ∈ X the orbit of x is esponentially
convergent to p.

Proof : Applying (1.2.1) several times we get

∀x, y ∈ X ∀n ∈ N d
(
fn(x), fn(y)

)
≤ λnd(x, y). (1.2.2)

As a consequence, for every x ∈ X the sequence {fn(x)} is a Cauchy sequence. Indeed, for every m > n we
get

d
(
fm(x), fn(x)

)
≤

m−n−1∑
k=0

d
(
fn+k+1(x), fn+k(x)

)
≤

m−n−1∑
k=0

λn+kd
(
f(x), x) <

λn

1− λ
d
(
f(x), x) −→ 0.

(1.2.3)

Thus for every x ∈ X the sequence {fn(x)} is converging, and (1.2.2) says that the limit does not depend
on x. Let p be this limit; then f(p) = p, that is p is a fixed point of f . Indeed,

f(p) = lim
n→∞

f
(
fn(p)

)
= lim

n→∞
fn+1(p) = p.

Being f a contraction, p is the unique fixed point of f . Finally, letting m go to infinity in (1.2.3) we find

d
(
p, fn(x)

)
≤ λn

1− λ
d
(
f(x), x),

and so the sequence {fn(x)} is esponentially convergent to p ∈ X.

For differentiable maps between Riemannian manifolds there is an easy sufficient condition for a map
to be a contraction. We first recall a standard definition:
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Definition 1.2.2: Let L:V → W be a linear map between finite-dimensionale normed vector spaces. Then
the norm of L is given by

‖L‖ = sup
‖v‖V =1

‖L(v)‖W = sup
v∈V \{O}

‖L(v)‖W
‖v‖V

,

where ‖ · ‖V (respectively, ‖ · ‖W ) is the norm in V (respectively, in W ). It is easy to check (exercise) that
this yields a norm on the space Hom(V, W ) of linear maps from V into W .

Proposition 1.2.2: Let F :M → N be a C1-map between (connected) Riemannian manifolds, and assume
that

K = sup
x∈M
‖dFx‖ < +∞.

Then we have

∀x, y ∈M dN

(
F (x), F (y)

)
≤ K dM (x, y),

where dM (respectively, dN ) is the Riemannian distance in M (respectively, N). In particular, if K < 1 then
F is a contraction.

Proof : Let σ: [0, r] → M be a piecewise regular curve and such that σ(0) = x and σ(r) = y. Then F ◦ σ is
a piecewise regular curve in N from F (x) to F (y), and hence

dN

(
F (x), F (y)

)
≤ Length(F ◦ σ)

=
∫ r

0

‖(F ◦ σ)′(t)‖F◦σ(t) dt =
∫ r

0

∥∥dFσ(t)

(
σ′(t)

)∥∥
F◦σ(t)

dt

≤ K

∫ r

0

‖σ′(t)‖σ(t) dt = K Length(σ).

Taking the infimum of the right-hand side as σ runs over all piecewise regular curves connecting x and y we
get the assertion.

Corollary 1.2.3: Let F :U → Rm be a C1-map, where U is a convex open subset of Rn, and assume that

K = sup
x∈U
‖dFx‖ < +∞.

Then we have

∀x, y ∈ U ‖F (x)− F (y)‖ ≤ K ‖x− y‖.
In particular, if K < 1 then F is a contraction.

Proof : It suffices to apply the previous Proposition to the euclidean metrics.

The fixed point of a contraction depends continuously on the contraction and on the contraction con-
stant λ. To precisely state this, we need the following

Definition 1.2.3: If Y is a metric space and f , g:X → Y are continuous maps into Y , we set

d0(f, g) = sup
x∈X

dY

(
f(x), g(x)

)
∈ [0, +∞].

If X is compact, then d0 is a distance on the space C0(X, Y ) of continuous functions from X into Y .

Proposition 1.2.4: Let f : X → X be a contraction of a complete metric space X, with contraction con-
stant λ and fixed point x0. Then for every ε > 0 there is 0 < δ < 1−λ so that for every contraction g:X → X
with contraction constant at most λ + δ and such that d0(f, g) < δ we have d(x0, y0) < ε, where y0 is the
fixed point of g.

Proof : Put δ = ε(1− λ)/(1 + ε). Since gn(x0)→ y0 we have

d(x0, y0) ≤
∞∑

n=0

d
(
gn(x0), gn+1(x0)

)
≤ d

(
x0, g(x0)

) ∞∑
n=0

(λ + δ)n <
δ

1− λ− δ
= ε.
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Exercise 1.2.1. Find a complete metric space X and a map f :X → X such that d
(
f(x), f(y)

)
< d(x, y)

for every x 6= y ∈ X, f is fixed point free and d
(
fn(x), fn(y)

)
does not converge to zero for some x, y ∈ X.

Exercise 1.2.2. Let X be a compact metric space, and f :X → X a map such that d
(
f(x), f(y)

)
< d(x, y)

for every x 6= y ∈ X. Prove that the orbit of every x ∈ X converges to the unique fixed point of f , and find
an example where the convergence is not exponential.

As first example of application of this principle we shall show that, assuming a non-degeneracy condition
on the differential, the existence of a periodic point of period m is stable under small perturbations. But
first we have to define a topology on the space of Cr maps.

Definition 1.2.4: Let f :U → Rm be a Cr map (0 ≤ r < ∞) defined on an open subset of Rn, and K ⊂ U a
compact subset. Let ‖f‖r,K be the maximum over K of the norm of f and of all its partial derivatives up to
order r included. In this way we get a set of semi-norms that can be used to define a topology on Cr(U, Rm)
taking as basis for the open sets the finite intersections of sets of the form

Ur,K(f, ε) = {g | ‖f − g‖r,K < ε},

where ε > 0 and K is a compact subset of U . If M is a smooth manifold, the same trick yields a topology on
Cr(M, Rm) by using only compact subsets contained inside local charts, and computing partial derivatives
with respect to the local coordinates. Finally, if N is another smooth manifold, we can consider N imbedded
in some Rm and give to Cr(M, N) the topology induced by the topology of Cr(M, Rm). By the way, it
is not difficult to prove (because a manifold is a countable union of compact subsets) that this topology is
induced by a complete metric; furthermore, Cr(M, N) is a Baire space and has a countable basis of open
sets. Roughly speaking, fn → g in the Cr topology if all the derivatives (up to order r) of fn converge
to the derivatives of g. Using the seminorms ‖ · ‖r,K for all finite r one defines analogously a topology on
C∞(M, N); in this case fn → g in the C∞ topology if all the derivatives of fn converge to the derivatives
of g. Finally, if M and N are complex manifolds, we put on Hol(M, N) the usual compact-open topology
(which is just the C0 topology); thanks to the wonderful properties of holomorphic maps, convergence in
the C0 topology implies convergence of all derivatives, that is in Hol(M, N) the C0 topology and the C∞

topology agree.

Exercise 1.2.3. Prove that
‖A‖ ≤

√
mn ‖A‖∞

for all A ∈ Mm,n(R), where ‖A‖∞ = max{|aij |}, and we have endowed Rn and Rn with the euclidean
metric. In particular, if f ∈ C1(U, V ) is a C1 map between open subsets U ⊆ Rn and V ⊆ Rm, we
have ‖dfx‖ ≤

√
mn ‖f‖1,U for all x ∈ U .

Proposition 1.2.5: Let M be a smooth manifold, and f : M →M of class C1. Let p ∈M be a periodic point
of period m such that 1 is not an eigenvalue of dfm

p . Then every map g: M →M sufficiently C1-close to f has
a unique periodic point of period m close to p. More precisely, there exists a compact neighbourhood B ⊂M
of p and an ε > 0 so that ‖g − f‖1,B∪···∪fm−1(B) < ε implies that g has a unique periodic point of period m
in B.

Proof : Since if ‖g − f‖1,K∪···∪fm−1(K) is small then ‖gm − fm‖1,K is small, we can assume m = 1. Being
a local problem, we can also assume M = Rn and p = O. Since 1 is not an eigenvalue of dfp, the Inverse
Function Theorem implies that F = f − id is invertible in a compact neighbourhood B of the origin, that
we may take to be a closed ball of radius R > 0. We look for an ε > 0 such that if ‖g − f‖1,B < ε then g
has a unique fixed point in B.

Set H = f − g. Then x ∈ B is a fixed point of g if and only if

x = g(x) = (f −H)(x) = (F + id−H)(x),

that is if and only if (F −H)(x) = O, that is if and only if

x = F−1 ◦H(x).
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So it suffices to prove that for ε small enough the map F−1 ◦H is a contraction of B into itself.
First of all, we take ε ≤ R, so that H(B) ⊆ B. Furthermore, if L = maxx∈B ‖dF−1

x ‖ then

‖F−1 ◦H(O)‖ ≤ L‖H(O)‖ ≤ L ε,

thanks to Corollary 1.2.3, because F−1(O) = O. Then

‖F−1 ◦H(x)‖ ≤ ‖F−1 ◦H(x)− F−1 ◦H(O)‖+ ‖F−1 ◦H(O)‖ ≤ ε L(m‖x‖+ 1) ≤ εL(nR + 1),

where we used Exercise 1.2.3. So to have F−1 ◦H(B) ⊆ B it suffices to require ε ≤ R/L(nR + 1).
Finally, if x, y ∈ B we have

‖F−1 ◦H(x)− F−1 ◦H(y)‖ ≤ nε L‖x− y‖,

and so if we also have ε < 1/nL we are done.

The assumption that 1 is not an eigenvalue of the differential is essential, as shown in the following
example:

Example 1.2.1. Let fλ: R → R be given by fλ(x) = λx + x2. Then Fix(f1) = {0}, while for λ 6= 1 the
function fλ has two distinct fixed points: Fix(fλ) = {0, 1−λ}. We have f ′λ(0) = λ, and in particular f ′1(0) = 1.
Now, it is easy to see that

‖f1 − fλ‖1,[−r,r] = |1− λ|r
for all r > 0, and so for every compact neighbourhood B of the origin and every ε > 0 there is a λ > 0 such
that ‖f1 − fλ‖1,B < ε but fλ has two distinct fixed points in B.

Often, discrete dynamical systems appear in families depending on one (or more) parameters, as in the
previous example. A variation of the dynamical behavior when the parameter crosses a particular value is
called a bifurcation. To describe examples of bifurcations, let us introduce the following terminology:

Definition 1.2.5: Let f :M →M a C1 self-map of a manifold M . A periodic point p ∈M of exact period m is
said attracting if all the eigenvalues of d(fm)p have absolute value less than 1; repelling if all the eigenvalues
of d(fm)p have absolute value greater than 1; hyperbolic if all the eigenvalues of d(fm)p have absolute value
different from 1.

Remark 1.2.1. d(fm)p = dffm−1(p) ◦ dffm−2(p) ◦ · · · ◦ dfp.

Definition 1.2.6: Let (X, f) be a discrete dynamical system on a metric space X. Given p ∈ X, we shall say
that x ∈ X is (forward) asymptotic to p if d

(
fk(x), fk(p)

)
→ 0 as k → +∞. The set of points asymptotic

to p is the stable set W s(p) of p. Finally, if f is invertible we shall say that x is backward asymptotic to p
if it is asymptotic to p with respect to f−1, and the set of points backward asymptotic to p is the unstable
set Wu(p) of p.

Exercise 1.2.4. Prove that the stable sets give a partition of the set X.

If p ∈ X is fixed, then its stable set is the set of points whose orbit is converging to p. More generally,
if p ∈ X is periodic of exact period m, then x ∈W s(p) if and only if fmk(x)→ p (exercise).

Example 1.2.2. If f : R→ R is given by f(x) = sinx, then W s(0) = R.

Example 1.2.3. If f : R→ R is given by f(x) = x3 then W s(0) = (−1, 1), W s(1) = {1}, W s(−1) = {−1},
Wu(0) = {0}, Wu(1) = R+ \ {0}, and Wu(−1) = R− \ {0}.

We shall later see (Corollary 1.3.4) that the stable set of an attracting point p contains an open neigh-
bourhood of p, justifying the adjective.

Example 1.2.4. In the Example 1.2.1, the origin is an attractive fixed point for |λ| < 1, and it is repelling
for |λ| > 1. The second fixed point is repelling for λ < 1 (and λ > 3), while it is attracting for 1 < λ < 3.
Therefore we have a bifurcation for λ = 1: roughly speaking, the two fixed points for 0 < λ < 1 merge
at λ = 1 and exchange their roles for 1 < λ < 3. (We shall discuss below what happens for λ = 3).
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The previous bifurcation is sort of exceptional, because it happens at parameter speed 0: indeed,

d

dλ
fλ(0)

∣∣∣∣
λ=1

= 0.

We end this section with two examples of more typical bifurcations:

Example 1.2.5. Let fc: R→ R given by fc(x) = x2+c. We have Fix(fc) = ∅ if c > 1/4, Fix(f1/4) = {1/2},
and Fix(fc) contains two points if c < 1/4. The appearance of two fixed points when the parameter crosses
a specific value is called a saddle-node bifurcation.

Exercise 1.2.5. Discuss the type (attracting, etc.) of the fixed points in the previous example.

Example 1.2.6. Let Fµ: R → R be given by Fµ(x) = µx(1 − x). We have two fixed points, the origin
and pµ = 1−1/µ. The origin is attracting for |µ| < 1, and repelling for |µ| > 1, while pµ is repelling for µ < 1
and µ > 3, and attracting for 1 < µ < 3. The bifurcation at µ = 1 is exactly the same as the one discussed
in Example 1.2.1. Much more interesting is the bifurcation at µ = 3. Indeed, if for 1 < µ ≤ 3 we have one
repelling and one attracting fixed point and no periodic points of exact period 2, when µ crosses 3 we see
that the attracting fixed point becomes repelling but it is born an attracting cycle of period 2 (check that
this is true). This is called a period-doubling bifurcation.

1.3 Linear maps

This section is devoted to the study of the dynamics of linear maps of a complex or real finite-dimensional
vector space.

Definition 1.3.1: Let T :V → V be a linear self-map of a finite-dimensional vector space V on the field K = R
or C. The set of all (complex) eigenvalues of T is the spectrum sp(T ) ⊂ C of T . The spectral radius
is r(T ) = max{|λ| | λ ∈ sp(T )}.

It is easy to see (exercise) that ‖T‖ ≥ r(T ) always. Conversely we have:

Lemma 1.3.1: Let T :V → V be a linear self-map of a finite-dimensional vector space V on R or C. Then
for every δ > 0 there exists a scalar (respectively, hermitian) product whose norm ‖ · ‖ is such that

‖T‖ ≤ r(T ) + δ.

Proof : Let B be a (real or complex) Jordan basis of V , so that T is represented by a (real or complex)
canonical Jordan matrix

A =

∣∣∣∣∣∣
A1

. . .
Ak

∣∣∣∣∣∣ ,

where each block is of the form ∣∣∣∣∣∣∣∣∣∣

λ 1
λ 1

. . . . . .
λ 1

λ

∣∣∣∣∣∣∣∣∣∣
with λ ∈ sp(T ), or, in the real case only, of the form∣∣∣∣∣∣∣∣∣∣

ρRϕ I2

ρRϕ I2

. . . . . .
ρRϕ I2

ρRϕ

∣∣∣∣∣∣∣∣∣∣
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corresponding to two complex conjugates eigenvalues λ = ρeiϕ e λ = ρe−iϕ, where Rϕ =
∣∣∣∣ cos ϕ sinϕ
− sinϕ cos ϕ

∣∣∣∣
and I2 is the identity matrix of order 2.

For t ∈ R let us denote by A(t) the matrix with the same block structure as A but where the off-
diagonal 1’s are replaced by t. We then put on V the scalar (hermitian) product for which the basis B
is orthonormal, and denote by ||| · ||| the corresponding norm. Now, t 7→ |||A(t)||| is a continuous function,
and (exercise) |||A(0)||| = r(A). Therefore given δ > 0 we can find tδ > 0 such that |||A(tδ)||| < r(A) + δ.
But A(tδ) = ΛAΛ−1, where Λ is the diagonal matrix composed by blocks of the form∣∣∣∣∣∣∣∣∣

1
t−1
δ

. . .
t−m+1
δ

∣∣∣∣∣∣∣∣∣
for each block of order m of the first kind, and by blocks of the form∣∣∣∣∣∣∣∣∣

I2

t−1
δ I2

. . .
t−m+1
δ I2

∣∣∣∣∣∣∣∣∣
for each block of order 2m of the second kind. So setting ‖v‖ = |||Λv||| we get (exercise)

‖A‖ = |||A(tδ)||| < r(A) + δ,

and we are done.

Corollary 1.3.2: Let T :V → V be a linear self-map of a finite-dimensional vector space V on R or C. Then
for every norm ‖ · ‖ on V and every δ > 0 there is a constant Cδ such that for every v ∈ V and every k ∈ N
we have

‖T k(v)‖ ≤ Cδ(r(T ) + δ)k‖v‖. (1.3.1)

Proof : Given δ > 0, let ||| · ||| be norm given by the previous Lemma. Since V is finite-dimensional, there are
c1, c2 > 0 such that c1‖v‖ ≤ |||v||| ≤ c2‖v‖ for all v ∈ V (exercise). Then

‖T k(v)‖ ≤ c2|||T k(v)||| ≤ c2|||T k||| |||v||| ≤ c2

c1
|||T |||k‖v‖ ≤ c2

c1

(
r(t) + δ

)k‖v‖.

Corollary 1.3.3: Let T :V → V be a linear self-map of a finite-dimensional vector space V on the field K
with all eigenvalues of absolute value less than 1 (that is such that r(T ) < 1). Then the orbit of every point
is exponentially convergent to the origin. If furthermore T is invertible, that is if 0 /∈ sp(T ), then every
backward orbit is exponentially divergent to infinity.

Proof : Choose δ > 0 so that r(T ) + δ < 1; then (1.3.1) shows that every orbit is exponentially convergent
to the origin. If T is invertible, then (1.3.1) yields

‖T−k(v)‖ ≥ ‖v‖
Cδ

(
1

r(T ) + δ

)k

,

and we are done.

We can now fulfill a previous promise:
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Corollary 1.3.4: Let p ∈M be a fixed point of a C1 self-map f : M →M of a manifold M . Then:

(i) if p is attracting then there exists a neighbourhood U of p attracted by p, that is such that fk(x)→ p
for all x ∈ U ;

(ii) if p is repelling then there exists a neighbourhood U of p repelled by p, that is so that for every x ∈ U\{p}
there exists a k > 0 such that fk(x) /∈ U .

Proof : Since it is a local statement, we can assume that M = Rn and p = O. If p is attracting, we
have r(dfO) < 1; therefore we can find a norm on Rn such that ‖dfO‖ < 1. Since f is C1, this means that
we can find a closed ball U centered at the origin and 0 < λ < 1 such that ‖dfx‖ ≤ λ for all x ∈ U . The
assertion then follows from Corollary 1.2.3 and Theorem 1.2.1.

Conversely, if p is repelling then f−1 is defined in a neighbourhood of the origin, and p is attracting
for f−1. In particular, we find a closed ball U centered at the origin and a 0 < λ < 1 so that ‖f−1(x)‖ ≤ λ‖x‖
for all x ∈ U .

Now take x ∈ U , and assume that fk(x) ∈ U for all k ∈ N. Since fk(x) = f−1
(
fk+1(x)

)
, it easily

follows by induction that

‖fk(x)‖ ≥ 1
λk
‖x‖;

therefore the orbit of x is unbounded, again the hypothesis that it was contained in U , unless x = O, and
we are done.

Exercise 1.3.1. Let f : R → R be a diffeomorphism of class C1. Show that all hyperbolic periodic points
of f are isolated.

Exercise 1.3.2. Let f : R→ R be a diffeomorphism of class C1 such that f(x) = x+x3 sin 1
x for x ∈ (0, 1/π).

Show that f has a non-isolated (non-hyperbolic) fixed point.

Coming back to a linear self-map T :V → V , if all eigenvalues of T have absolute value greater than 1,
we can apply Corollary 1.3.3 to T−1, showing that every orbit is exponentially divergent to infinity, and that
every backward orbit is exponentially convergent to the origin.

To study the dynamics of more general linear maps we need a few more definitions.

Definition 1.3.2: Let T :V → V be a linear self-map of a finite-dimensional vector space V on the field K,
and take λ ∈ sp(T ). If λ ∈ K, we denote by Vλ the eigenspace relative to λ, and by Eλ the root space
(or generalized eigenspace) relative to λ, given by all v ∈ V such that (T − λ id)k(v) = O for some k ≥ 1.
If K = R and λ ∈ C \ R, we denote by Vλ ⊆ V C the eigenspace relative to λ for the action of T on the
complexified space V C = V ⊕ iV , and by Eλ ⊆ V C the corresponding root space. In this case we then
set Vλ,λ = (Vλ ⊕ Vλ) ∩ V and Eλ,λ = (Eλ ⊕ Eλ) ∩ V . Using the root spaces we now define a number of
dynamically relevant subspaces. The stable subspace of T is

Es = Es(T ) =
⊕

|λ|<1,λ∈K
Eλ ⊕

⊕
|λ|<1,λ∈C\K

Eλ,λ;

the invertible stable subspace is

Esi = Esi(T ) =
⊕

0<|λ|<1,λ∈K
Eλ ⊕

⊕
|λ|<1,λ∈C\K

Eλ,λ,

so that Es = E0 ⊕ Esi; the unstable subspace is

Eu = Eu(T ) =
⊕

|λ|>1,λ∈K
Eλ ⊕

⊕
|λ|>1,λ∈C\K

Eλ,λ;

the central subspace is
Ec = Ec(T ) =

⊕
|λ|=1,λ∈K

Eλ ⊕
⊕

|λ|=1,λ∈C\K
Eλ,λ;
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the core subspace is
C = C(T ) =

⊕
|λ|=1,λ∈K

Vλ ⊕
⊕

|λ|=1,λ∈C\K
Vλ,λ;

and the invertible subspace is
Ei = Esi ⊕ Ec ⊕ Eu.

All these subspaces are T -invariant; furthermore, T |Ei is invertible. Finally, V = Es ⊕Ec ⊕Eu = E0 ⊕Ei.

Theorem 1.3.5: Let T :V → V be a linear self-map of a finite-dimensional vector space V on the field K.
Then:

(i) There exists a scalar (or hermitian) product on V such that T |Es and (T |Eu)−1 are contractions, and
T |C an isometry, with respect to the induced norm ‖ · ‖.

(ii) For every v ∈ V we have v ∈ Es if and only if the orbit of v is exponentially convergent to the origin;
furthermore, if v ∈ Esi then the backward (with respect to T |Ei) orbit of v is exponentially divergent
to infinity.

(iii) For every v ∈ V we have v ∈ Eu if and only if v ∈ Ei and the backward orbit of v is exponentially
convergent to the origin; furthermore, if v ∈ Eu then the orbit of v is exponentially divergent to infinity.

(iv) If v ∈ Ec \ C then both the orbit and the backward orbit of v are polynomially divergent to infinity.
(v) More generally, given v ∈ V write v = vs + vc + vu with vs ∈ Es, vc ∈ Ec and vu ∈ Eu. Then:

– if vu 6= O then the orbit of v is exponentially divergent to infinity;
– if vu = O and vc ∈ Ec \ C then the orbit of v is polynomially divergent to infinity;
– if vu = O and vc ∈ C \ {O} then the orbit of v is bounded and bounded away from the origin;
– if vu = vc = O (that is, if v ∈ Es) then the orbit of v is exponentially convergent to the origin.

Proof : (i) Applying Lemma 1.3.1 to T |Es and to (T |Eu)−1 we get on Es and Eu norms induced by a scalar
(or hermitian) product such that T |Es and (T |Eu)−1 are contractions. Then we choose a Jordan basis for T
restricted to Ec, and we put on Ec the scalar (hermitian) product making this basis orthonormal; clearly
T |C turns out to be an isometry. Finally, we combine these three scalar (hermitian) products to get a scalar
(or hermitian) product on V by declaring the subspaces Eu, Ec and Es to be orthogonal.

(ii) The behavior of the orbits follows from Corollary 1.3.3 applied to T |Es ; the characterization of the
elements of Es will follow from (v).

(iii) The behavior of the orbits follows from the same Corollary applied to (T |Eu)−1; the characterization
follows from (v) applied to (T |Ei)−1.

(iv) Using the norm described in (i) it is clear that it suffices to prove the assertion when T |Ec is
represented by a single Jordan block A relative to the eigenvalue λ ∈ S1. It is then an exercise in linear
algebra; see Exercise 1.3.1.

(v) If vu 6= O we get
‖T k(v)‖ = ‖T k(vu) + T k(vc) + T k(vs)‖

≥ ‖T k(vu)‖ − ‖T k(vc)‖ − ‖T k(vs)‖
≥ c1µ

k − c2k
m − c3λ

k ≥ c4µ
k

for suitable c1, c2, c3, c4 > 0, µ > 1 > λ and m ≥ 1, all independent of k. Similar arguments yield the
remaining assertions.

Exercise 1.3.3. Let A ∈ GL(`, C) be a Jordan block of order ` ≥ 2 relative to an eigenvalue λ ∈ S1.
(i) Prove that there are c1, c2 > 0 and 1 ≤ m1 ≤ m2 ≤ `− 1 such that

c1k
m1 ≤ |ak

ij | ≤ c2k
m2

for all 1 ≤ i < j ≤ ` and all k ∈ N, where ak
ij is the (i, j)-element of the matrix Ak.

(ii) Prove that if v ∈ C` is not an eigenvector of A then there exist c3, c4 > 0 so that c3k
m1 ≤ ‖Akv‖ ≤ c4k

m2

for all k ∈ N.
(iii) Prove that if A ∈ GL(2`, R) is a pseudo-Jordan block of order 2` relative to an eigenvalue λ ∈ S1 \{±1},

and v ∈ R2` \ (R2`)λ,λ, there are c5, c6 > 0 and 1 ≤ m3 ≤ m4 ≤ 2`− 1 so that c5k
m3 ≤ ‖Akv‖ ≤ c6k

m4

for all k ∈ N.
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Definition 1.3.3: A linear self-map T :V → V of a finite-dimensional vector space V on the field K is hyperbolic
if T has no eigenvalues of modulus one, that is if sp(T ) ∩ S1 = ∅.

The behavior described in the previous theorem is particularly simple for hyperbolic linear maps: the
space V decomposes in a T -invariant direct sum V = Es ⊕ Eu so that T |Es and (TEu)−1 are contractions,
and all orbits are exponentially divergent to infinity except for orbits inside Es which are exponentially
convergent to the origin. Furthermore, the orbits of points in V \ (Es ∪ Eu) are forward asymptotic to Eu

and backward asymptotic to Es, and thus have a sort of “hyperbolic” shape.
Most linear maps are hyperbolic, as shown in the next exercise.

Exercise 1.3.4. Let V be a finite-dimensional vector space on the field K. Prove that the set of hyperbolic
linear self-maps of V is an open dense subset of the space of all linear self-maps of V .

Exercise 1.3.5. Prove that the eigenvalues of a linear map T :V → V depend continuously on T , that is prove
that if λ1, . . . , λk are the eigenvalues of T with multiplicity respectively m1, . . . , mk, then for every ε > 0
there exists δ > 0 such that if ‖T − S‖ < δ then in the open disk of center λj and radius ε the linear map S
has exactly mj eigenvalues (counted according to their multiplicities) for j = 1, . . . , k.

Theorem 1.3.5 describes he dynamics of a linear self-map everywhere except on the core subspace, or,
more precisely, everywhere but on the subspaces Vλ,λ (or Vλ if K = C) with |λ| = 1 but λ /∈ R. Such a
subspace decomposes in a sum of real 2-dimensional (or complex 1-dimensional) T -invariant subspaces, and
the action of T on any such subspace is a rotation of angle 2πα, where λ = e2πiα. If α ∈ Q then a suitable
iterate of T is the identity, and there is nothing else to say. But if α /∈ Q then new phenomena appear, as
we shall see in the next section.

1.4 Translations of the torus and topological transitivity

Let us start with the rotations of S1 = {e2πiϕ | ϕ ∈ R} = R/Z. Using additive notations (that is thinking
of S1 as R/Z), the rotation Rα of angle 2πα is represented by

Rα(x) = x + α (mod 1),

so that Rk
α(x) = x + kα (mod 1). In particular, if α = p/q ∈ Q we have Rq

p/q = idS1 , that is the rotation of
angle 2πp/q is globally periodic of period q.

The situation is much more interesting when α /∈ Q. In all the examples we have seen so far, the orbits
were either converging or diverging to infinity, and coming back on themselves only if periodic. In other
words, we have not yet seen non-trivial recurrence phenomena: orbits coming arbitrarily close to the starting
point without being periodic.

The two main cases of recurrent behavior are topological transitivity and minimality.

Definition 1.4.1: A dynamical system (X, f) is topologically transitive if there is x ∈ X whose orbit is dense
in X. It is minimal if every orbit is dense.

Remark 1.4.1. This is not the standard definition of topological transitivity. The standard definition
(which is more useful but less intuitive than the one we just gave) is described in Proposition 1.4.3, where
we show that in “good” topological spaces it is equivalent to ours.

Exercise 1.4.1. Prove that the closure of a f -invariant subset is still f -invariant.

Exercise 1.4.2. Prove that a dynamical system (X, f) is minimal if and only if there are no proper closed
f -invariant subsets of X.

Proposition 1.4.1: If α ∈ R is irrational then the rotation Rα:S1 → S1 is minimal.

Proof : Let Y ⊆ S1 be the closure of an orbit. If the orbit is not dense, the complement S1 \ Y of Y is
open and not empty, and thus it is an (at most countable) union of open disjoint intervals, its connected
components; furthermore, since Rα(Y ) ⊆ Y , we have R−1

α (S1 \ Y ) ⊆ S1 \ Y .
Let I be the longest connected component of S1 \ Y (or one of the longest if there are more than one;

in any case, notice that only a finite number of connected components can be longer than any given ε > 0,
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because they are all disjoint and S1 \Y has finite length). If R−k
α (I) = I for some k ≥ 0, an end x of I would

be periodic, that is x+kα = x (mod 1), and so α would be rational. On the other hand, also R−k
α (I)∩I 6= ∅

is impossible, because otherwise S1 \ Y would contain an interval longer than I. Therefore {R−k
α (I)}k∈N is

a disjoint collection of intervals of S1 all of the same positive length, and this is clearly impossible.

Since the plane decomposes in a disjoint union of circles Rα-invariant (including the origin as a degen-
erate circle of radius zero), this result completes the description of the dynamics of linear maps.

Exercise 1.4.3. Prove that the decimal expansion of the number 2k may begin with any finite string of
digits.

In the proof of the previous proposition it did not matter which orbit we chose. This is not accidental:

Lemma 1.4.2: Let G be a topological group. If g0 ∈ G is such that the left (or right) translation Lg0 is
topologically transitive, then Lg0 is minimal.

Proof : Let x0 ∈ G be such that its orbit {gk
0x0}k∈N under Lg0 is dense in G, and let x ∈ G be any other

point. Now, gk
0x = (gk

0x0)(x−1
0 x); therefore the orbit of x is obtained applying the right translation Rx−1

0 x

to the orbit of x0. Since right translations are homeomorphisms, the assertion follows.

Exercise 1.4.4. Let G be a metrizable topological group. Prove that if for some g0 ∈ G the left (respectively,
right) translation Lg0 (respectively, Rg0) is topologically transitive then G is abelian.

Now we proceed to the study of more interesting examples. We start with the direct generalization of
rotations on S1, that is with translations on the torus Tn = (S1)n = (R/Z)n.

Definition 1.4.2: If γ = (γ1, . . . , γn) ∈ Tn, the associated translation Tγ : Tn → Tn is given by

Tγ(x1, . . . , xn) = (x1 + γ1, . . . , xn + γn) (mod 1).

Again, if all coordinates of γ are rational then Tγ is globally periodic. However, contrarily to the case
of S1, it is not anymore true that the only alternative is minimality. For instance, if n = 2 and γ = (α, 0)
with α irrational, then the torus T2 is the disjoint union of the circles x2 = const., which are completely
Tγ-invariant and minimal.

To find a characterization of minimal translations, we need some general criteria of topological transi-
tivity and minimality.

Proposition 1.4.3: Let X be a locally compact Hausdorff space with a countable basis of open sets and
no isolated points, and f : X → X a continuous self-map. Then f is topologically transitive if and only if for
every pair of not empty open sets U , V ⊂ X there is N = N(U, V ) ∈ N such that fN (U) ∩ V 6= ∅.

Proof : Let f be topologically transitive, and x ∈ X with a dense orbit. Since X is Hausdorff and has no
isolated points, the orbit of x must intersect every open subset of X infinitely many times. In particular, given
the open sets U and V there are h, k ∈ N such that fh(x) ∈ U and fk(x) ∈ V , and we can assume k ≥ h.
But then fk(x) ∈ fk−h(U) ∩ V , as required.

Conversely, let us assume that the condition on the intersections holds. Let U1, U2, . . . be a countable
basis of open sets of X; by local compactness, we can also assume that U1 is compact. To prove the topological
transitivity of f it suffices to find an orbit intersecting every Un. By assumption, there exists N1 ∈ N such
that fN1(U1)∩U2 is not empty. Let V1 be a not empty open set such that V1 ⊂ U1∩f−N1(U2); in particular,
V1 is compact. Now, there exists a natural number N2 such that fN2(V1)∩U3 is not empty; let V2 be a not
empty open set such that V2 ⊂ V1 ∩ f−N2(U3). Proceeding by induction we build a decreasing sequence of
open sets Vn such that Vn+1 ⊂ Vn ∩ f−Nn+1(Un+2). Then if x belongs to the intersection ∩∞n=1Vn, which is
not empty by compactness, we have fNn−1(x) ∈ Un for every n ∈ N.

Remark 1.4.2. The previous proof shows that if for every pair of not empty open sets U , V ⊆ X yjere
is N ∈ N such that fN (U) ∩ V 6= ∅ then there is a dense orbit even when X has isolated points. The
converse is not true if X has isolated points. For instance, let X = S1 ∪ {p0}, where p0 is an isolated point,
and take f :X → X given by f(p0) = 1 and f |S1 = R−α for some α ∈ R \Q. Then the orbit of p0 is dense,
but fN (S1) ∩ {p0} = ∅ for all N ≥ 0, even though both S1 and {p0} are open in X.
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Remark 1.4.3. A locally compact Haudorff space is always regular; a regular Hausdorff space with a
countable basis of open sets is always metrizable; so every locally compact Hausdorff space with a countable
basis of open sets is always metrizable. For this reason, in the sequel we shall often work with metrizable
spaces instead of merely Hausdorff spaces.

When f :X → X is a homeomorphism, we can check the topological transitivity using full orbits:

Proposition 1.4.4: Let X be a locally compact Hausdorff space with a countable basis of open sets and
no isolated points, and f :X → X a homeomorphism. Then the following assertions are equivalent:

(i) f is topologically transitive;
(ii) there exists x ∈ X with a dense full orbit;
(iii) for every pair of not empty open sets U , V ⊂ X there exists N = N(U, V ) ∈ N such that fN (U)∩V 6= ∅;
(iv) for every pair of not empty open sets U , V ⊂ X there exists N = N(U, V ) ∈ Z such that fN (U)∩V 6= ∅.

Remark 1.4.4. The equivalence of (ii) and (iv) holds even when there are isolated points.

Proof : We have already seen that (i) is equivalent to (iii); the same argument (even when there are isolated
points) shows that (ii) is equivalent to (iv). Since (i) clearly implies (ii), it suffices to prove that (ii) and (iv)
together imply (iii).

We first show that for every M ∈ N and every open subset W ⊂ X there exists n > M such
that f−n(W ) ∩W 6= ∅. Indeed, since X has no isolated points condition (ii) implies that there is x ∈ X
and an infinite subset H ⊆ Z such that fh(x) ∈ W for every h ∈ H. Then taking h0, h1 ∈ H such
that h0 − h1 > M (this can be done because H is infinite) we get fh1−h0(W ) ∩W 6= ∅, as desired.

Let now U and V be not empty open sets. Condition (iv) yields N ∈ Z such that W = fN (U)∩V 6= ∅.
If N ≥ 0 we are done; if instead N < 0, let n > |N | be such that f−n(W ) ∩W 6= ∅. But then

∅ 6= fn
(
f−n(W ) ∩W ) = W ∩ fn(W ) = V ∩ fN (U) ∩ fn(V ) ∩ fn+N (U) ⊆ fn+N (U) ∩ V,

and (iii) is verified, because n + N > 0 by the choice of n.

Corollary 1.4.5: Let X be a locally compact Hausdorff space with a countable basis of open sets and no
isolated points, and f : X → X a homeomorphism. Then f is topologically transitive if and only if there do
not exist two not empty disjoint completely f -invariant open subsets of X.

Proof : An invariant subset contains any orbit starting in it; therefore if f is topologically transitive then
two not empty invariant open sets always have a not empty intersection. Conversely, let U and V be two
not empty open subsets of X. Then the sets Ũ =

⋃
k∈Z fk(U) and Ṽ =

⋃
k∈Z fk(V ) are completely f -

invariant open subsets, and thus their intersection is not empty. This means that there are h, k ∈ Z such
that fh(U) ∩ fk(V ) 6= ∅, so that fh−k(U) ∩ V 6= ∅, and Proposition 1.4.4 implies that f is topologically
transitive.

Remark 1.4.5. This proof shows that if f :X → X is merely continuous and topological transitive,
then there do not exist two non empty disjoint f -invariant open subsets of X. If f is not an homeomor-
phism, the converse is not true. Take X = S1 × Z2, and let f :X → X be given by f(x, 0) = (x, 1)
and f(x, 1) =

(
Rα(x), 1

)
for some α ∈ R \ Q. Since Rα is minimal, the only not empty open completely

Rα-invariant subset of S1 is S1 itself (why?); therefor the only not empty open completely f -invariant subset
of X is X itself. But no orbit of f is dense, and fN (S1 × {1}) ∩ S1 × {0} = ∅ for all N ∈ N.

A necessary condition for topological transitivity can be stated using functions.

Definition 1.4.3: Let (X, f) be a dynamical system. A map ϕ:X → Y is called f -invariant if ϕ
(
f(x)

)
= ϕ(x)

for every x ∈ X.

Lemma 1.4.6: Let (X, f) be a topologically transitive dynamical system. Then every continuous f -invariant
function ϕ: X → Y is constant.

Proof : Let x ∈ X be a point with dense orbit. The f -invariance of ϕ yields

ϕ
(
fk(x)

)
= ϕ(x)

for all k ∈ N; therefore ϕ is constant on the orbit of x — and thus everywhere.
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This is what we need to characterize the minimal translations of the torus.

Definition 1.4.4: The numbers γ0, . . . , γn ∈ R are rationally dependent if there are integers k0, . . . , kn ∈ Z,
with at least one kj different from zero, such that k0γ0 + · · ·+ knγn = 0; they are rationally independent if
they are not rationally dependent.

Proposition 1.4.7: A translation Tγ : Tn → Tn is minimal if and only if the numbers 1, γ1, . . . , γn are
rationally independent.

Proof : Let us assume that 1, γ1, . . . , γn are not rationally independent, e let k0, . . . , kn ∈ Z be such that

k1γ1 + · · ·+ knγn = k0,

with kj 6= 0 for at least one 1 ≤ j ≤ n. Define ϕ: Tn → R by

ϕ(x) = sin 2π(k1x1 + · · ·+ knxn).

It is a well-defined continuous function on the torus, it is not constant because there is at least one kj different
from zero, and it is clearly Tγ-invariant; therefore, by Lemma 1.4.6, Tγ cannot be topologically transitive.

Conversely, suppose that Tγ is not minimal (and thus not even topologically transitive, by Lemma 1.4.2).
Corollary 1.4.5 then yields two disjoint not empty open sets U and V completely Tγ-invariant. Let χ be the
characteristic function of U ; being U completely invariant, χ is Tγ-invariant. Let

χ(x1, . . . , xn) =
∑

(k1,...,kn)∈Zn

χk1,...,kn
exp

(
2πi(k1x1 + · · ·+ knxn)

)

be the Fourier expansion of χ. Since

χ
(
Tγ(x)

)
= χ(x1 + γ1, . . . , xn + γn) =

∑
(k1,...,kn)∈Zn

χk1,...,kn
exp

[
2πi

(
k1(x1 + γ1) + · · ·+ kn(xn + γn)

)]
=

∑
(k1,...,kn)∈Zn

χk1,...,kn exp
(
2πi(k1γ1 + · · ·+ knγn)

)
exp

(
2πi(k1x1 + · · ·+ knxn)

)
,

the Tγ-invariance of χ and the uniquess of the Fourier expansion imply that for every (k1, . . . , kn) ∈ Zn we
have

χk1,...,kn

[
1− exp

(
2πi(k1x1 + · · ·+ knxn)

)]
= 0.

But this may happen if and only if χk1,...,kn = 0 or k1γ1 + · · · + knγn ∈ Z for all (k1, . . . , kn) ∈ Zn. Since
both U and its complement contain not empty open subsets, and thus have positive Lebesgue measure, χ
is not almost everywhere constant. Hence there must exists (k1, . . . , kn) 6= O such that χk1,...,kn

6= 0, and
so k1γ1 + · · ·+ knγn ∈ Z, that is 1, γ1, . . . , γn are not rationally independent.

Exercise 1.4.5. Prove that for every translation Tγ : Tn → Tn and every x ∈ Tn the closure C(x) of the
full orbit {T k

γ (x)}k∈Z of x is a finite union of tori of dimension 0 ≤ m ≤ n, such that the restriction of Tγ

to C(x) is minimal.

Exercise 1.4.6. Prove that the map Aα: T2 → T2 given by Aα(x, y) = (x+α, y+x) (mod 1) is topologically
transitive if and only if α is irrational.
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1.5 Toral automorphisms and chaotic dynamical systems

In this section we study another kind of toral automorphism, anticipating several characteristics of general
hyperbolic dynamical systems.

Let L: R2 → R2 be the matrix

L =
∣∣∣∣ 2 1
1 1

∣∣∣∣ .

Since L belongs to SL(2, Z), it sends Z2 into itself, and thus defines a map FL: T2 → T2 given by

FL(x, y) = (2x + y, x + y) (mod 1).

The map FL is continuous, invertibile (because det L = 1 implies L−1 ∈ SL(2, Z) too) and it is an automor-
phism of T2 as topological group.

As linear map, L is hyperbolic: its eigenvalues are

λ1 =
3 +
√

5
2

> 1, λ−1
1 = λ2 =

3−
√

5
2

< 1.

Being L symmetric, the eigenvectors are orthogonal. The eigenspace relative to λ1 has equation y = ωx,
where ω =

√
5−1
2 ; the family of lines parallel to it is sent into itself by L. Moreover, L expands uniformly the

distances on these lines, by a factor λ1. More precisely, if we denote by `c ⊂ R2 the line of equation y = ωx+c,
with c ∈ R, then L(`c) = `(1−ω)c, and

‖L(v1)− L(v0)‖ = λ1‖v1 − v0‖

for all v0, v1 ∈ `c.
Analogously, the lines `′c parallel to the eigenspace relative to λ2 have equation y = (ω−

√
5)x+c, and L

sends `′c into `′
(1−ω+

√
5)c

contracting distances by a factor λ2.
To describe the dynamical properties of FL we shall need the following well-known and interesting

Theorem 1.5.1: (Pick) Let P ⊂ R2 be a simple (i.e., whose sides intersect at the vertices only) polygon,
and assume that the vertices of P belong to Z2. Then

Area(P ) = i +
e

2
− 1,

where i is the number of points of Z2 belonging to the interior of P , and e is the number of points of Z2

belonging to the boundary of P .

Proposition 1.5.2: The map FL: T2 → T2 is topologically transitive, and its periodic points are dense in T2.
Furthermore, the number of periodic points of (not necessarily exact) period k ∈ N is given by λk

1 +λ−k
1 − 2.

Proof : Let us begin by proving that all points with rational coordinates are periodic points of FL; this
in particular implies that periodic points are dense. Choose x = r/q and y = s/q, with r, s, q ∈ Z not
necessarily coprime. Then

FL(r/q, s/q) =
(
(2r + s)/q, (r + s)/q

)
,

that is FL(x, y) is a rational point whose coordinates still have denominator q. But there are only q2 points
in T2 whose coordinates are represented by rational numbers with q as denominator, and the whole orbit
of (r/q, s/q) is contained in this finite set; therefore there exist h ≥ k such that Fh

L(r/q, s/q) = F k
L(r/q, s/q).

Being FL invertible, this implies that Fh−k
L (r/q, s/q) = (r/q, s/q), that is (r/q, s/q) is a periodic point for FL,

as claimed.
We now prove that these are the only periodic points. Suppose that F k

L(x, y) = (x, y). But

F k
L(x, y) = (ax + by, cx + dy) (mod 1)
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for suitable integers a, b, c, d ∈ N; therefore {
ax + by = x + r,
cx + dy = y + s,

(1.5.1)

for suitable integers r, s ∈ Z. Since 1 is not an eigenvalue of Lk we can solve (1.5.1) obtaining

x =
(d− 1)r − bs

(a− 1)(d− 1)− cb
, y =

(a− 1)s− cr

(a− 1)(d− 1)− cb
,

and hence x and y are rational.
Let us now show that FL is topologically transitive (but it is not minimal: a periodic orbit cannot be

dense). Let U and V be two not empty open subsets of T2; since periodic points are dense, we can find two
periodic points p ∈ U , q ∈ V of common (not necessarily exact) period k ∈ N. Let c0 ∈ [0, 1] be such that
the projection π(`c0) of `c0 on the torus contains p, and d0 ∈ [0, 1] such that the projection π(`′d0

) contains q,
where π: R2 → T2 is the canonical projection. Since F k

L(p) = p, and L sends the family of lines `c into itself,
we necessarily have F k

L

(
π(`c0)

)
= π(`c0). Analogously, F k

L

(
π(`′d0

)
)

= π(`′d0
).

Let r ∈ T2 be in the intersection of these two curves. Since Lk acts on the lines `′d contracting
the distances by a factor λk

2 , we necessarily have Fmk
L (r) → q for m → +∞ (why?). Analogously, we

find F−mk
L (r) → p for m → +∞. Hence if m > 0 is large enough we have F−mk

L (r) ∈ U and Fmk
L (r) ∈ V ;

therefore F 2mk
L (U) ∩ V 6= ∅, and FL is topologically transitive thanks to Proposition 1.4.3.

We are left with counting the periodic points. As before, we have F k
L(x, y) = (x, y) if and only

if (a − 1)x + by and cx + (d − 1)y are integers. Thus the number of periodic points of period k is ex-
actly equal to the cardinality of the intersection of Z2 with the set P = (Lk − id)

(
[0, 1)× [0, 1)

)
. Now, the

boundary of P is the parallelogram with vertices the origin, (a − 1, c), (b, d − 1) and (a + b − 1, c + d − 1);
therefore, using the symbols introduced in the statement of Theorem 1.5.1, the number of periodic points of
period k is given by

i +
e

2
− 1 = Area(P ) = |det(Lk − id)| = |(λk

1 − 1)(λ−k
1 − 1)| = λk

1 + λ−k
1 − 2.

Exercise 1.5.1. Prove that Lk =
∣∣∣∣ F2k F2k−1

F2k−1 F2k−2

∣∣∣∣, where Fk is the k-th Fibonacci number.

We remark a basic difference between the automorphism FL and the translations Tγ : while in the latter
case every orbit is dense, in the former case arbitrarily close to dense orbits there are periodic orbits, that
is orbits with a completely different behavior. In other words, the dynamical behavior is very sensitive to
initial conditions. This is a typical phenomenon for chaotic dynamical systems.

Definition 1.5.1: A dynamical system (X, f) is chaotic if it is topologically transitive and the periodic points
are dense.

Example 1.5.1. The dynamical system (T2, FL) is chaotic.

In good topological spaces we have an interesting characterization of chaotic dynamical systems:

Proposition 1.5.3: Let X be a Hausdorff locally compact topological space with a countable basis of open
sets and no isolated points. Then a dynamical system (X, f) is chaotic if and only if every pair of not empty
open sets share a periodic orbit, that is if for every open pair of not empty subsets U , V ⊂ X there is
a periodic point x ∈ U such that O+(x) ∩ V 6= ∅, or, equivalently, there exists N = N(U, V ) ∈ N such
that fN (U) ∩ V ∩ Per (f) 6= ∅.

Proof : Assume that every pair of not empty open subsets share a periodic orbit. Then, by Proposition 1.4.3,
f is topologically transitive. Furthermore, every open set must contain a periodic point, and so periodic
points are dense.

Conversely, assume that f is chaotic. Again by Proposition 1.4.3, we know that for every pair of open
sets U , V ⊂ X there are y ∈ U and k ∈ N such that fk(y) ∈ V . Let W = f−k(V ) ∩ U . Clearly, W is
open and not empty, because y ∈ W ; therefore it must contain a periodic point x. But then fk(x) ∈ V ,
and O+(x) ∩ V 6= ∅, as required.
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Remark 1.5.1. If we assume as definition of topological transitivity the characterization given in Propo-
sition 1.4.3, both the previous result and Proposition 1.5.4 hold without topological assumptions.

Exercise 1.5.2. Let X be a Hausdorff locally compact topological space with a countable basis of open sets
and no isolated points. Prove that if f :X → X is a chaotic dynamical system then for every finite collection
of non-empty open subsets of X there are infinitely many periodic orbits intersecting all the sets in the
collection.

There is a property of chaotic dynamical systems expressing very well the intuitive notion of chaos.

Definition 1.5.2: A dynamical system (X, f) on a metric space X has sensitive dependence on initial conditions
if there is δ > 0 such that for every x ∈ X and every neighbourhood U ⊂ X of x there exist y ∈ U and k ≥ 0
such that d

(
fk(x), fk(y)

)
> δ.

Proposition 1.5.4: Let X be a locally compact metric space with a countable basis of open sets and without
isolated points. Then every chaotic dynamical system on X has sensitive dependence on initial conditions.

Proof : Let f :X → X be topologically transitive and having a dense set of periodic points; we shall prove
that it has sensitive dependence on initial conditions.

First of all, there is a δ0 > 0 such that for all x ∈ X there is a periodic point q ∈ X whose orbit is at
distance at least δ0/2 from x. Indeed, choose two arbitrary periodic points q1 and q2 with disjoint orbits,
and let δ0 be the distance between these two orbits. Then every x ∈ X is at least δ0/2 away from one of
these two orbits.

Put δ = δ0/8. Let x ∈ X be arbitrary, and U a neighbourhood of x. Since periodic points are dense,
there is a periodic point p ∈ U ∩B(x, δ), where B(x, δ) is the open ball of center x and radius δ. Let k0 ∈ N
be the period of p. By the previous observation, there is a periodic point q ∈ X whose orbit is at least 4δ
away from x. Set

V =
k0⋂

j=0

f−j
(
B

(
f j(q), δ

))
;

this is open and not empty because q ∈ V . By Proposition 1.4.3, there are y ∈ U and k ∈ N such
that fk(y) ∈ V .

Now let l be the integer part of (k/k0) + 1, so that 1 ≤ k0l − k ≤ k0. Then

fk0l(y) = fk0l−k
(
fk(y)

)
∈ fk0l−k(V ) ⊆ B

(
fk0l−k(q), δ

)
.

Now fk0l(p) = p, and so

d
(
fk0l(p), fk0l(y)

)
≥ d

(
x, fk0l−k(q)

)
− d

(
fk0l−k(q), fk0l(y)

)
− d(p, x) > 4δ − δ − δ = 2δ.

Therefore at least one of d
(
fk0l(x), fk0l(y)

)
and d

(
fk0l(x), fk0l(p)

)
must be greater than δ, and we are

done.

Remark 1.5.2. Devaney defined a chaotic system as a dynamical system topologically transitive, having
sensitive dependence to initial conditions and having a dense set of periodic points. Propositions 1.5.3
and 1.5.4 show that, in locally compact metric spaces with a countable basis of open sets and no isolated
points, Devaney’s definition is equivalent to ours.

Even the type of topological transitivity of Tγ and FL is different.

Definition 1.5.3: A dynamical system (X, f) is topologically mixing if for every pair of not empty open
sets U , V ⊂ X there is N = N(U, V ) ∈ N so that for every k ≥ N the intersection fk(U) ∩ V is not empty.

Thanks to Proposition 1.4.3, every topologically mixing dynamical system on a sensible topological
space is topologically transitive; the converse is false.
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Lemma 1.5.5: Let (X, f) be a dynamical system. If there is a f -invariant distance d generating the topology
of X, then f cannot be topologically mixing. In particular, the translations Tγ are not topologically mixing.

Proof : Choose three distinct points x, y1, y2 ∈ X, and let δ be equal to one-fifth of the minimal distance
between them. Let U , V1, V2 be the balls of radius δ and center x, y1, y2 respectively. Since f preserves
the diameter of any subset of X, the diameter of fk(U) cannot exceed 2δ, while the distance between two
points p ∈ V1 and q ∈ V2 is at least 3δ. Hence for every k > 0 at least one of the intersections fk(U) ∩ V1

and fk(U) ∩ V2 is empty.
Finally, Tγ preserves the distance induced by the euclidean distance of Rn, and thus it is not topologically

mixing.

On the other hand

Proposition 1.5.6: The dynamical system (T2, FL) is topologically mixing.

Proof : The projection ˆ̀
c = π(`c) of a line `c is invariant under the translation T(1,ω), which is minimal by

Proposition 1.4.7; in particular, every such ˆ̀
c is dense in T2, and thus every open set U contains a segment J

of any ˆ̀
c.

Now fix ε > 0 and a c ∈ [0, 1]. We claim that there is T = T (ε, c) > 0 such that every segment of ˆ̀
c of

length T intersects every ε-ball on the torus. Since every segment of ˆ̀
c of length T is obtained by a given one

applying a translation of the form T(t,tω) for a suitable t ∈ R, it suffices to prove that there is one segment
of ˆ̀

c of finite length intersecting every ε-ball. Suppose this is not the case; then we can find an increasing se-
quence In ⊂ In+1 of segments of ˆ̀

c of length at least n and a sequence {xn} ⊂ T2 such that In∩B(xn, ε) = ∅.
Up to a subsequence we can assume that xn → y ∈ T2. Since ˆ̀

c is dense, we have ˆ̀
c∩B(y, ε/2) 6= ∅; being ˆ̀

c

the union of the In, this means that there is n0 ∈ N such that In ∩ B(y, ε/2) 6= ∅ for every n ≥ n0. But
then if we choose n ≥ n0 so that d(xn, y) < ε/2 we get In ∩B(xn, ε) 6= ∅, contradiction.

Now we claim that we can find a T (ε) independent of c. Suppose not: then for every n > 0 we can find
a cn ∈ [0, 1], a segment In ⊂ ˆ̀

cn
of length at least n, and a xn ∈ X such that In∩B(xn, ε) = ∅. Again, we can

assume that xn → y and cn → d. By the previous statement, for every segment I ⊂ ˆ̀
d of length T = T (ε/3, d)

we have I ∩B(y, ε/3) 6= ∅. Then it is clear that for n large enough we have In∩B(xn, ε) 6= ∅, contradiction.
Finally, let V be any not empty open set, and ε > 0 such that V contains one ball of radius ε. Let J ⊂ U

be a segment of a ˆ̀
c. Then there is a N = N(J, ε) such that F k

L(J) is a segment of some ˆ̀
d of length at

least T (ε) for any k ≥ N ; therefore F k
L(J) ∩ V 6= ∅, and we are done.

The automorphism FL is just one example of a family of toral automorphisms.

Definition 1.5.4: A hyperbolic toral endomorphism is a map fo the form FA: Tn → Tn where A ∈ GL(n, Z) is
a hyperbolic matrix with integer entries. If moreover detA = ±1, then FA is invertible, and it is a hyperbolic
toral automorphism.

We end this ection with a couple of exercises describing some properties of hyperbolic toral automor-
phisms.

Exercise 1.5.3. Let A ∈ GL(n, Z) be any matrix with integer entries and determinant ±1. Prove that the
induced map LA: Tn → Tn has a finite number of periodic points of period k for all k ∈ N if and only if A
is hyperbolic.

Exercise 1.5.4. Prove that the periodic points of a hyperbolic endomorphism of Tn are dense.

Exercise 1.5.5. Let f :S1 → S1 be given by f(x) = 2x (mod 1). Prove that f is chaotic.

1.6 The quadratic family

In this section we begin the study of the quadratic family Fµ: R→ R defined by

Fµ(x) = µx(1− x)
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for µ ∈ R∗. It is easy to check that

Fix(Fµ) =
{

0, 1− 1
µ

}
, Fµ(1) = 0, Fµ

(
1
µ

)
= 1− 1

µ
, F ′µ(x) = µ(1− 2x); F ′µ(0) = µ; F ′µ

(
1− 1

µ

)
= 2− µ.

In particular, the derivative of Fµ vanishes only at x = 1/2, where Fµ(1/2) = µ/4, which is an absolute
maximum if µ > 0, and an absolute minimum if µ < 0.

The dynamics of Fµ for 0 < |µ| ≤ 1 is easily described:

Exercise 1.6.1. Assume that 0 < |µ| ≤ 1. Prove that:
(i) if 0 < µ ≤ 1 and x ∈ (−∞, 1− 1/µ) ∪ (1/µ,+∞) then F k

µ (x)→ −∞ as k → +∞;
(ii) if 0 < µ ≤ 1 and x ∈ (1− 1/µ, 1/µ) then F k

µ (x)→ 0 as k → +∞;
(iii) if −1 ≤ µ < 0 and x ∈ (−∞, 1/µ) ∪ (1− 1/µ,+∞) then F k

µ (x)→ +∞ as k → +∞;
(iv) if −1 ≤ µ < 0 and x ∈ (1/µ, 1− 1/µ) then F k

µ (x)→ 0 as k → +∞.

If |µ| > 1 then the origin becomes a repelling fixed point, and the dynamics becomes more interesting.
In this section we shall concentrate our attention on the case µ > 1. For simplicity, we put

pµ = 1− 1
µ

;

since µ > 1 we have pµ ∈ (0, 1).

Lemma 1.6.1: If µ > 1 and x ∈ (−∞, 0) ∪ (1,+∞) then F k
µ (x)→ −∞.

Proof : If x < 0 we clearly have µx < x and hence Fµ(x) < x. So the orbit {F k
µ (x)} is strictly decreasing,

and hence converge to a point x∞ ∈ [−∞, 0). But x∞ cannot be finite, because otherwise, by Remark 1.1.1,
it would be a negative fixed point of Fµ, and Fµ has no negative fixed points. Therefore F k

µ (x) → −∞ for
all x ∈ R−. Since Fµ

(
1,+∞)

)
= (−∞, 0), we are done.

So the interesting dynamics (if any) should live in the interval I = [0, 1]; in particular, we know that as
soon as an orbit leaves the interval I then it necessarily escapes to infinity.

The case 1 < µ < 3 is not difficult to study:

Proposition 1.6.2: If 1 < µ < 3 and x ∈ (0, 1) then F k
µ (x)→ pµ.

Proof : When 1 < µ < 3 we know that pµ is an attractive fixed point, and hence there is a neighbourhood of
points whose orbit converges to pµ; our aim is to show that this neighbourhood is the whole interval (0, 1).

Let us first assume 1 < µ ≤ 2. Then pµ ≤ 1/2, and Fµ is increasing in the interval [0, pµ]; in particular,
since 0 and pµ are fixed, we have Fµ([0, pµ]) = [0, pµ]. Furthermore, if x ∈ (0, pµ) we have

0 < x < Fµ(x) < pµ;

hence the orbit {F k
µ (x)} is strictly increasing and bounded, and thus converges (by Remark 1.1.1) to pµ.

If x ∈ (pµ, 1/2] we instead have pµ < Fµ(x) < x; therefore we again obtain F k
µ (x) → pµ. Finally,

since Fµ

(
(1/2, 1)

)
⊂ (0, 1/2) because Fµ(1/2) = µ/4 ≤ 1/2, we are done in this case.

Let us now assume 2 < µ < 3, so that pµ > 1/2 > 1/µ. Then Fµ

(
(1/µ, pµ)

)
= (pµ, µ/4] and

F 2
µ

(
(1/µ, pµ)

)
=

[
µ2

4

(
1− µ

4

)
, pµ

)
⊂

(
1
2
, pµ

)
⊂

(
1
µ

, pµ

)
.

In particular, F 2
µ(1/µ) > 1/µ and F 2

µ(pµ) = pµ. Since we have already seen (Example 1.2.6) that Fµ has
no periodic points of exact period 2 when 2 < µ < 3, it follows that F 2

µ − id does not vanish in (1/µ, pµ),
and so pµ > F 2

µ(x) > x > 1/µ for all x ∈ (1/µ, pµ). The usual argument based on Remark 1.1.1 then shows
that F 2k

µ (x)→ pµ for all x ∈ (1/µ, pµ). But then

F 2k+1
µ (x) = Fµ

(
F 2k

µ (x)
)
→ Fµ(pµ) = pµ,

and hence we have F k
µ (x)→ pµ for all x ∈ (1/µ, pµ).

Take now x ∈ (0, 1/µ), so that Fµ(x) > x. If the orbit of x were contained in (0, 1/µ), then it would be
strictly increasing and bounded, and thus converging to a fixed point of Fµ in (0, 1/µ], impossible. Therefore
there is a k0 > 0 such that F k0

µ (x) ∈ [1/µ, pµ), and the previous argument yields F k
µ (x)→ pµ.

Finally, Fµ

(
(pµ, 1)

)
= (0, pµ), and we are done.
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Exercise 1.6.2. Describe the dynamics of F3.

As noticed in Example 1.2.6, when µ crosses 3 two things happen: pµ becomes repelling, and it appears
an attracting cycle of period 2. This is the beginning of an interesting story that we shall (I hope!) describe
later. Now instead we discuss what happen when µ > 4, where a completely new phenomenon appears.
Indeed, when µ > 4 the maximum of Fµ is greater than 1; as a consequence, there are orbits starting in [0, 1]
that escapes to infinity. On the other hand, there are orbits never leaving I, e.g., periodic orbits. This means
that the study of the dynamics of Fµ for µ > 4 boils down to answering two main questions:
(A) What is the (topological) structure of the set Λ ⊂ I of points with bounded orbit?
(B) What is the dynamics of Fµ restricted to Λ?
We shall answer question (A) in this section, deferring the answer to question (B) to the next section.

The set of points x ∈ I whose image via Fµ is outside I is an open interval A0 ⊂ I centered at 1/2; the
complement I \ A0 is the union of two closed intervals I0 and I1, where I0 contains 0 and I1 contains 1. It
is easy to see that Fµ(I0) = Fµ(I1) = I and that Fµ is increasing in I0 and decreasing in I1.

Now let
A1 = F−1

µ (A0) = {x ∈ I | Fµ(x) ∈ I, F 2
µ(x) /∈ I};

this is the union of two open intervals, one contained in I0 and the second in I1. So I \ (A0 ∪ A1) is the
union of four closed intervals that we shall call (going from left to right) I00, I01, I11 and I10. The names
are chosen so that

Is0s1 ⊂ Is0 and Fµ(Is0s1) = Is1

for all s0, s1 = 0, 1. In particular, F 2
µ(Is0s1) = I, and F 2

µ is increasing on I00 and I11, while it is decreasing
on I01 and I10.

Let us then now define by induction

Ak = F−1
µ (Ak−1) = {x ∈ I | Fµ(x), . . . , F k

µ (x) ∈ I, F k+1
µ (x) /∈ I}.

Then it is easy to check (do it!) that I \ (A0 ∪ · · · ∪Ak) is the union of 2k+1 disjoint closed intervals that we
can label I0...0, . . . , I1...1 in such a way that

Is0...sk
⊂ Is0 and Fµ(Is0...sk

) = Is1...sk

for all s0, . . . , sk = 0, 1. In particular, it is easy to see by induction that Is0...sk
⊂ Is0...sk−1 ; indeed, this is

true for k = 1, and

Is0...sk
= Is0 ∩ F−1

µ (Is1...sk
) ⊂ I0 ∩ F−1

µ (Is1...sk−1) = Is0...sk−1 . (1.6.1)

Now let x ∈ I be such that its orbit is not contained in I. This means that x must belong to some Ak,
and then its orbit diverges to infinity. Hence the set Λ of points with bounded orbits coincides with the
complementary of the Ak, that is

Λ = I \
∞⋃

k=0

Ak =
∞⋂

k=0

I \ (A0 ∪ · · · ∪Ak).

We are now able to describe the topological structure of Λ:

Theorem 1.6.3: Let µ > 4. Then Λ is compact, totally disconnected and without isolated points.

Proof : Since Λ is closed in I, it is clearly compact. Let us prove that it has no isolated points. First of all,
notice that the end points of each interval in an Ak belongs to Λ, because their orbit ends in 0 after k + 2
iterations. If p ∈ Λ is isolated, there must exist a neighbourhood U of p in I such that U \ {p} ⊆

⋃
k Ak.

Since the end points of the intervals in each Ak belong to Λ, they cannot accumulate in p; therefore the only
possibility is that p is the right end point of an interval in some Ak1 , and the left end point of an interval
in some Ak2 . But then, up to shrink U , we can find k0 > 0 such that F k0

µ (p) = 0 and F k0
µ (U \ {p}) ⊂ R−.
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So F k0
µ has a local maximum in p, which implies (F k0

µ )′(p) = 0. Hence F ′µ
(
F j

µ(p)
)

= 0 for some 0 ≤ j < k0,
which forces F j

µ(p) = 1/2. Therefore F j+1
µ (p) /∈ I and p /∈ Λ, contradiction.

To prove that Λ is totally disconnected, we assume that µ > 2 +
√

5 (see Remark 1.6.1 for the general
case). Under this assumption, we have (check!) |F ′µ(x)| > 1 for all x ∈ I0 ∪ I1. Therefore we can find c > 1
such that |F ′µ(x)| ≥ c for all x ∈ Λ, and hence

∀x ∈ Λ,∀k ∈ N |(F k
µ )′(x)| ≥ ck. (1.6.2)

Let us assume, by contradiction, that Λ contains an interval [x, y]. Choose k ∈ N so that ck|x− y| > 1. But
then Lagrange’s theorem yields

|F k
µ (x)− F k

µ (y)| = |(F k
µ )′(ξ)||x− y| ≥ ck|x− y| > 1

for a suitable ξ ∈ [x, y] ⊂ Λ. But this means that either F k
µ (x) or F k

µ (y) does not belong to I, contradiction.

Remark 1.6.1. In the previous proof, we needed to assume µ > 2+
√

5 only to prove (1.6.2). Clearly, the
same proof would also work under the slightly weaker assumption that there exist K > 0 and c > 1 so that

∀x ∈ Λ,∀k ∈ N |(F k
µ )′(x)| ≥ Kck. (1.6.3)

In Section 1.8 we shall describe how to prove this for all µ > 4, thus completing the proof of Theorem 1.6.3.

Definition 1.6.1: A Cantor set is a compact, totally disconnected topological space without isolated points.

Remark 1.6.2. It can be proved that all Cantor sets are homeomorphic (and metrizable, locally compact
and with a countable base of open sets). Furthermore, their cardinality is always uncountable. Finally, the
classical one-third Cantor set is a Cantor set according to this definition.

So Theorem 1.6.3 can be expressed saying that the set Λ is a Cantor set; and this answers completely
question (A). Notices that in particular Λ is uncountable. This means that besides the periodic orbits (that
are countable) and the pre-periodic orbits (that are still countable) it contains infinitely many non-trivial
bounded orbits.

To fully understand the dynamics on Λ, answering question (B), we need a new tool.

1.7 Symbolic dynamics

To describe the behavior of a dynamical system one needs suitable models. A good source of models is
provided by sequence spaces and shift mappings.

Definition 1.7.1: Given N ≥ 2, set ZN = {0, . . . , N − 1}. The sequence space Ω+
N on N symbols is

Ω+
N = (ZN )N = {s = (s0s1 . . .) | sj ∈ ZN for all j ∈ N}.

Analogously, the two-sided sequence space ΩN on N symbols is given by

ΩN = (ZN )Z = {s = (. . . s−1s0s1 . . .) | sj ∈ ZN for all j ∈ Z}.
Remark 1.7.1. To simplify the exposition, in the sequel we shall sometimes think of Ω+

N as a subset
of ΩN , identifying a one-sided sequence (s0s1 . . .) with the two-sided sequence (. . . 00s0s1 . . .).

It is not difficult to define a distance on Ω+
N and ΩN :

Lemma 1.7.1: Let d: ΩN × ΩN → R+ be given by

d(s, t) =
+∞∑

j=−∞

|sj − tj |
N |j|

.

Then d is a distance on ΩN such that diam(ΩN ) ≤ N + 1 and diam(Ω+
N ) ≤ N .

Proof : The fact that d is a distance is an easy exercise. Furthermore,

d(s, t) ≤ (N − 1)
+∞∑

j=−∞

1
N |j|

= (N − 1)
(

2
1

1− 1
N

− 1
)

= N + 1

for all s, t ∈ ΩN . A similar estimate yields the assertion for Ω+
N .
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Remark 1.7.2. In some cases it might be useful to consider the distance

dλ(s, t) =
+∞∑

j=−∞

|sj − tj |
λ|j|

,

where λ > 1.

Exercise 1.7.1. Prove the analogous of Lemma 1.7.1 for dλ, and prove that two such distances always induce
the same topology.

It is also easy to see when two sequence are close with respect to this distance:

Lemma 1.7.2: (i) Let s, t ∈ Ω+
N . If sj = tj for 0 ≤ j ≤ k then d(s, t) ≤ 1/Nk. Conversely, if d(s, t) < 1/Nk

then sj = tj for 0 ≤ j ≤ k.
(ii) Let s, t ∈ ΩN . If sj = tj for 0 ≤ |j| ≤ k then d(s, t) ≤ 2/Nk. Conversely, if d(s, t) < 1/Nk then sj = tj

for 0 ≤ |j| ≤ k.

Proof : (i) If sj = tj for 0 ≤ j ≤ k we have

d(s, t) =
∞∑

j=k+1

|sj − tj |
N j

=
1

Nk+1

∞∑
j=0

|sj+k+1 − tj+k+1|
N j

≤ 1
Nk

.

Conversely, if sj 6= tj for some 0 ≤ j ≤ k we clearly have d(s, t) ≥ 1/N j ≥ 1/Nk.
(ii) If sj = tj for 0 ≤ |j| ≤ k we have

d(s, t) =
∞∑

j=k+1

|sj − tj |
N j

+
−k−1∑
j=−∞

|sj − tj |
N |j|

=
1

Nk+1

 ∞∑
j=0

|sj+k+1 − tj+k+1|
N j

+
0∑

j=−∞

|sj−k−1 − tj−k−1|
N |j|


≤ 2

Nk
.

Conversely, if sj 6= tj for some 0 ≤ |j| ≤ k we clearly have d(s, t) ≥ 1/N |j| ≥ 1/Nk.

As shown by the latter lemma, it is not easy to explicitely describe the balls for this distance. Luckily,
we can use another basis for the topology:

Definition 1.7.2: A cylinder (of rank 1) in Ω+
N (or ΩN ) is a set of the form

Cm
a = {s ∈ Ω+

N | sm = a},

where m ∈ N (or j ∈ Z) and a ∈ ZN . More generally, a cylinder of rank r ≥ 1 is the intersection of r
cylinders of rank 1:

Cm1...mr
a1...ar

= Cm1
a1
∩ · · · ∩ Cmr

ar
= {s ∈ Ω+

N | smh
= ah for h = 1, . . . , r}.

Lemma 1.7.3: The cylinders are open and closed subsets of Ω+
N and ΩN . In particular, the topology induced

by the distance d coincides with the product tpology on (ZN )N and (ZN )Z, where we have endowed ZN with
the discrete topology.

Proof : Take s ∈ Cm
a . If t ∈ Ω+

N is such that d(s, t) < 1/Nm we necessarily have tm = sm = a, and
so t ∈ Cm

a . In other words, we have proved that B(s, 1/Nm) ⊂ Cm
a , and hence Cm

a is open. It is also closed,
because

Ω+
N \ Cm

a =
⋃

b∈ZN
b6=a

Cm
b

is open. As a consequence, all the cylinders are open and closed, being finite intersections of open and closed
sets.
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Now, the cylinders are exactly a basis of the product topology; so to prove that the product topology
coincides with the distance topology we are left to proving that every ball for the distance can be written as
union of cylinders. But indeed, given t ∈ B(s, ε), choose r > 0 so that 1/Nr < ε−d(s, t). Then if r ∈ C0...r

t0...tr

we have
d(s, r) ≤ d(s, t) + d(t, r) ≤ d(s, t) +

1
Nr

< ε;

therefore t ∈ C0...r
t0...tr

⊂ B(s, ε),as desired.
A completely analogous argument works for ΩN , and we are done.

We are now able to explicitely describe the topology on the sequence spaces:

Proposition 1.7.4: Ω+
N and ΩN are Cantor sets.

Proof : Since it is easy to prove (exercise) that ΩN and Ω+
N are homeomorphic, we shall work with the latter.

To prove that Ω+
N is compact, instead of quoting Tychonoff’s theorem on the product of compact spaces

we shall directly prove that Ω+
N is sequentially compact. Let {s(n)} be a sequence in Ω+

N . Since s
(n)
0 runs in

a finite set, we can extract a subsequence {s(0,n)} such that s
(0,n)
0 is constant, say equal to s∞0 ∈ ZN . For

the same reason, we can extract now a sub-subsequence {s(1,n)} such that s
(1,n)
0 ≡ s∞0 and s

(1,n)
1 ≡ s∞1 for a

suitable s∞1 ∈ ZN . Proceeding in this way, by induction we build a sequence {s(k,n)} of nested subsequences
such that s

(k,n)
0 ≡ s∞0 , . . . , s

(k,n)
k ≡ s∞k . But then it is easy to check that the diagonal subsequence {s(n,n)}

converges to the sequence s∞ = (s∞0 s∞1 . . .).
If s ∈ Ω+

N then the sequence {s(n)} defined by

s
(n)
j =

{
sj if j 6= n,
sj + 1 (mod N) if j = n,

is composed by distinct elements and converges to s; therefore Ω+
N has no isolated points.

Finally, Ω+
N is totally disconnected: if s 6= t take m ∈ N so that sm 6= tm. Then U = Cm

sm

and V = ∪a6=smCm
a are two disjoint open sets such that s ∈ U , t ∈ V and Ω+

N = U ∪ V .

Now we we know our space, we can define our model dynamical system.

Definition 1.7.3: The full left shift σN : ΩN → ΩN is defined by σN (s) = s′, where s′n = sn+1. It sends
cylinders onto cylinders, it is invertible and thus it is a homeomorphism. We analogously define the left
shift σN : Ω+

N → Ω+
N by setting

σN (ω0, ω1, . . .) = (ω1, ω2, . . .).

It is continuous, open and surjective, but it is not invertible: every point has exactly N preimages.

Proposition 1.7.5: The dynamical systems (ΩN , σN ) and (Ω+
N , σN ) are both chaotic. Furthermore, σN is

topologically mixing on both spaces, and has Nk periodic points of period k for all k ≥ 1.

Proof : We shall discuss the case of Ω+
N ; similar arguments work in ΩN too.

A periodic point of period k for σN is a periodic sequence of period k; since such a sequence is uniquely
determined by its beginning segment (s0 . . . sk−1), we have exactly Nk periodic points of period k.

To prove that σN is chaotic, since every open set contains a cylinder, it suffices to show that every pair
of cylinders shares a periodic orbit, by Proposition 1.5.3. Since every cylinder contains a cylinder of the
form C0...r

a0...ar
, it suffices to prove that two cylinders C0...r

a0...ar
and C0...r′

b0...br′
share a periodic orbit. Define s ∈ Ω+

N

by setting

sj =
{

aj for 0 ≤ j ≤ r,
bj−r−1 for j = r + 1, . . . , r + r′ + 1,

and then repeating the sequence. Then s is periodic, it belongs to C0...r
a0...ar

and σr+1
N (s) ∈ C0...r′

b0...br′
.

We can prove analogously that σN is topologically mixing. Take p > 0, and consider any sequence s
such that

sj =
{

aj for 0 ≤ j ≤ r,
bj−r−1−p for j = r + p + 1, . . . , r + r′ + p + 1.

Then s ∈ C0...r
a0...ar

and σr+1+p
N (s) ∈ C0...r′

b0...br′
. Therefore σk

N (C0...r
a0...ar

) ∩ C0...r′

b0...br′
6= ∅ for any k > r + 1.
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Remark 1.7.3. A point s ∈ Ω+
N with a dense orbit is obtaining starting with the sequence 0 . . . N − 1, the

adding all the possible sequences of two symbols, and then all the possible sequences of three symbols, and
so on. It is also easy to see directly that the periodic points are dense. Given s ∈ Ω+

N and n ≥ 0, let s(n) be
defined repeating the initial segment (s0 . . . sn) of s. Then each s(n) is periodic and s(n) → s as n→ +∞.

The idea is that the dynamical system (Ω+
2 , σ2) is, in a suitable sense, equivalent to the dynamical

system (Λ, Fµ|Λ), where Fµ is the quadratic map (with µ > 4) studied in the previous section.
As usual, as soon as a new class of objects is introduced one needs a notion of equivalence stating when

two such objects are to be considered identical. In dynamics we have several notions of equivalence, mostly
depending on the differentiability of the maps under consideration.

Definition 1.7.4: Two dynamical systems (X, f) and (Y, g) on topological spaces are (topologically) conju-
gated (or equivalent) if there is a homeomorphism ϕ:X → Y , the conjugacy, such that

ϕ ◦ f = g ◦ ϕ, (1.7.1)

so that f = ϕ−1 ◦ g ◦ϕ. More generally, if M and N are manifolds, two Cr maps f :M →M and g:N → N
are Cm equivalent or Cm conjugate (with 0 ≤ m ≤ r ≤ ∞) if there is a Cm diffeomorphism ϕ:M → N , the
conjugacy, such that ϕ ◦ f = g ◦ ϕ. If M and N are complex manifolds, there are similar definitions in the
holomorphic category.

The whole point of (1.7.1) is that it implies

ϕ ◦ fk = gk ◦ ϕ (1.7.2)

for all k ∈ N, and hence

∀k ∈ N fk = ϕ−1 ◦ gk ◦ ϕ;

this means that all the dynamical properties of f can be read in g, via the map ϕ.
Actually, to get (1.7.2) from (1.7.1) it is not necessary that ϕ be invertible, and thus it is sometimes

useful the following

Definition 1.7.5: Given two dynamical systems (X, f) and (Y, g), if there is a surjective map ϕ:X → Y such
that ϕ◦f = g ◦ϕ, we shall say that g is semiconjugate to (or a factor of) f , and that ϕ is a semiconjugation.

Exercise 1.7.2. Let ϕ:X → Y be a semiconjugation between (X, f) and (Y, g). Prove that:

(i) ϕ
(
Per(f)

)
⊆ Per(g);

(ii) if the periodic points of f are dense in X then the periodic points of g are dense in Y ;
(iii) if f is topologically transitive then also g is;
(iv) if f is chaotic then also g is.

Exercise 1.7.3. Let f : S1 → S1 be given by f(x) = 2x (mod 1), and g: [−1, 1] → [−1, 1] given by
g(x) = 2x2 − 1. Prove that g is semiconjugated to f , and deduce that g is chaotic on [−1.1].

We can now state in a rigourous way the equivalence of (Λ, Fµ|Λ) and (Ω+
2 , σ2):

Theorem 1.7.6: Let µ > 4. Then (Λ, Fµ|Λ) and (Ω+
2 , σ2) are topologically conjugated.

Proof : We must define a homeomorphism S: Λ → Ω+
2 such that S ◦ Fµ = σ2 ◦ S. We shall use all the

notations introduced in the previous section.
For any x ∈ Λ, we necessarily have F j

µ(x) ∈ I0∪I1 for all j ∈ N; we then define S(x) by setting S(x)j = s

if and only if F j
µ(x) ∈ Is.

Let us first show that S is bijective. Given s ∈ Ω+
2 , put

Is =
∞⋂

n=0

Is0...sn .
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Thanks to (1.6.1), Is is a decreasing intersection of closed intervals; hence it is a not empty closed interval.
Now, by construction we have

Is0...sn = Is0 ∩ F−1
µ (Is1) ∩ · · · ∩ F−n

µ (Isn);

therefore S(x) = s if and only if x ∈ Is, and in particular Is ⊂ Λ. But Λ is totally disconnected; hence Is
must be a single point, and hence S is bijective.

Now we show that S is continuous. Choose x ∈ Λ and ε > 0, set S(x) = s, and choose n ≥ 0 so
that 1/2n < ε. Now, Λ is contained in the finite union of intervals of the form It0...tn ; let

δ = dist

Is0...sn ,
⋃

(t0...tn)6=(s0...sn)

It0...tn

 > 0.

Then y ∈ Λ and |x − y| < δ implies y ∈ Is0...sn , and hence d
(
S(x), S(y)

)
≤ 1/2n < ε, and S is continuous.

Since Λ is compact and Ω+
2 is Hausdorff, it follows that S is a homeomorphism.

Finally, let us show that S conjugates Fµ with the shift. But indeed S(x) = s yields

F j−1
µ

(
Fµ(x)

)
= F j

µ(x) ∈ Isj ,

and hence S
(
Fµ(x)

)
j

= sj+1, which means exactly that S ◦ Fµ = σ2 ◦ S.

Remark 1.7.4. Notice that to build the conjugation S we have partitioned Λ in two sets and then tracked
the itinerary of an orbit in the two sets. This is the standard way for building conjugations (or, at least,
semiconjugatinos) between a complicated dynamical system and a symbolic dynamical system.

Corollary 1.7.7: Let µ > 4. Then (Λ, Fµ|Λ) is chaotic, topologically mixing, and it has 2k periodic points
of period k ∈ N.

Proof : It follows from the previous Theorem and from Proposition 1.7.5.

Exercise 1.7.4. Let Ω = Ω+
2 / ∼, where ∼ is the equivalence relation given by

(s0 . . . sn−10100 . . .) ∼ (s0 . . . sn−11100 . . .);

since s ∼ t implies σ2(s) ∼ σ2(t), the shift σ2 induces a well-defined continuous map σ: Ω→ Ω.
(i) Prove that (Ω, σ) is chaotic.
(ii) Let T : [0, 1]→ [0, 1] be the tent map given by

T (x) =
{

2x if 0 ≤ x ≤ 1/2,
2− 2x if 1/2 ≤ x ≤ 1.

Prove that T is topologically conjugated to σ.
(iii) Prove that F4 is topologically conjugated to T , and hence it is chaotic on [0, 1].

We end this section with a few more definitions and exercises.

Definition 1.7.6: The restriction of the shift σN to a closed shift-invariant subset of Ω+
N (or ΩN ) is called a

symbolic dynamical system.

Definition 1.7.7: A binary matrix is a matrix A ∈ MN,N (Z2), with row and column indeces running from 0
to N − 1. Given a binary matrix A, we set

ΩA = {s ∈ ΩN | asj ,sj+1 = 1 for all j ∈ Z}.

Clearly ΩA is closed and shift-invariant; the corresponding symbolic dynamical system is called a topological
Markov chain. Sometimes, σA = σN |ΩA

is said a subshift of finite type. Analogous definitions hold in Ω+
N .

Exercise 1.7.5. Let A =
∣∣∣∣ 0 1
1 1

∣∣∣∣. Prove that (Ω+
A, σ2) is chaotic. Furthermore, shows that if pk denotes the

number of periodic points of period k then p1 = 1, p2 = 3 and pk = pk−1 + pk−2 for k ≥ 3.
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Definition 1.7.8: Let σA be a topological Markov chain. The associated graph GA has {0, 1, . . . , N − 1} as
sets of vertices, and a pair (i, j) is a directed edge if and only if aij = 1. A sequence of vertices of GA is
admissible if any two consecutive vertices in the sequence are connected by a directed edge.

The following exercises contain further informations on topological Markov chains.

Exercise 1.7.6. Let A be a binary matrix. Prove that for every i, j ∈ {0, . . . , N − 1} the number of
admissible sequences in GA of length m + 1 beginning at i and ending at j is equal to the entry am

ij of the
matrix Am.

Exercise 1.7.7. Let A be a binary matrix. Prove that the number of periodic points of period k for σA is
given by tr(Ak).

Definition 1.7.9: A binary matrix A and the corresponding topological Markov chain σA are called transitive
if for some m > 0 all the entries of Am are positive.

Exercise 1.7.8. Let A be a binary matrix. Prove that if for some n > 0 all the entries of An are positive
then this is true for Am for any m ≥ n.

Exercise 1.7.9. Let A be a transitive binary matrix. Prove that if α = (α−r, . . . , αr) is an admissible
sequence then the intersection ΩA ∩ C−r...r

α−r...αr
contains a periodic point.

Exercise 1.7.10. Prove that any transitive topological Markov chain is chaotic and topologically mixing.

In the following exercises A is a binary matrix with at least one 1 in every row and column.

Exercise 1.7.11. Prove that for all j ∈ {0, . . . , N − 1} the set ΩA,j = {s ∈ ΩA | s0 = j} is not empty.

Exercise 1.7.12. Prove that if there is s ∈ ΩA containing the symbol j at least twice then there is a periodic
element s′ ∈ ΩA such that s′0 = j.

Exercise 1.7.13. Let us call essential the symbols j satisfying the condition of the previous exercise. Prove
that if s ∈ ΩA is in the closure of a forward orbit of σA then s contains only essential symbols.

Exercise 1.7.14. We shall say that two essential symbols i and j are equivalent if there are s, s′ ∈ ΩA,
k1 < k2 and l1 < l2 such that sk1 = s′l2 = i and sk2 = s′l1 = j. Prove that this is an equivalence relation on
the set of essential symbols.

Exercise 1.7.15. Prove that σA is topologically transitive if and only if all symbols are essential and equiv-
alent.

Exercise 1.7.16. Assuming that σA is topologically transitive, prove that there exist a positive integer M and
a partition of ΩA into closed disjoint subsets Λ1, . . . ,ΛM = Λ0 so that σA(Λj) = Λj+1 for j = 0, . . . , M−1 and
the restriction of (σA)M to each Λj is topologically mixing. Furthermore this corresponds to a decomposition
of the set {0, . . . , N − 1} into M equal groups such that every ω ∈ ΩA has only symbols from one group in
positions equal modulo M .

1.8 The Schwarzian derivative⌈
In this section we shall introduce a tool very useful in one-dimensional dynamics, and we shall describe

how to use it to complete the proof of Theorem 1.6.3.

Definition 1.8.1: Let f : I → R be of class C3, where I ⊆ R is an interval, and denote by Crit(f) the set of
critical points of f . The Schwarzian derivative of f is the function Sf : I \ Crit(f)→ R given by

Sf =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

.

If x0 ∈ Crit(f) we shall also put

Sf(x0) = lim
x→x0

Sf(x) ∈ R ∪ {±∞}
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when the limit exists (finite or infinite).

A way to understand the meaning of the Schwarzian derivative is to see which functions have vanishing
Schwarzian derivative:

Proposition 1.8.1: Let f : I → R be of class C3. Then Sf ≡ 0 if and only if there are a, b, c, d ∈ R not all
vanishing such that

f(x) =
ax + b

cx + d
.

The Schwarzian derivative behaves very well under composition:

Proposition 1.8.2: Let f : I → R and g:J → R two functions of class C3 with g(J) ⊆ I. Then

S(f ◦ g) =
(
(Sf) ◦ g

)
(g′)2 + Sg.

In particular, if Sf , Sg < 0 then S(f ◦ g) < 0.

Example 1.8.1. It is easy to check that

SFµ(x) = − 6
(1− 2x)2

,

and hence S(Fµ)k < 0 for all µ ∈ R∗ and k ≥ 1. Notice that SFµ(1/2) = −∞.

Exercise 1.8.1. Prove that if P ∈ R[x] is a polynomial such that all the roots of P ′ are real and distinct
then SP < 0.

The first main result on the dynamics of functions with negative Schwarzian derivative is:

Theorem 1.8.3: Let f : I → I be a function of class C3 with n critical points, and assume that Sf < 0
(Sf may assume the value −∞ in some critical point). Then f has at most n + 2 non-repelling periodic
points. Furthermore, every periodic cycle (except at most two) must attract a critical point.

The proof depends on the following lemmata:

Lemma 1.8.4: Let f : I → I be a function of class C3 with Sf < 0. Then f ′ cannot have either a positive
local minimum or a negative local maximum.

Lemma 1.8.5: Let f : I → I be a function of class C3 with Sf < 0. Then between two isolated critical
points of f ′ there always is a critical point of f .

Lemma 1.8.6: Let f : I → I be a function of class C3 with a finite numebr of critical points. Then Crit(fk)
is a finite set for all k ∈ N.

Lemma 1.8.7: Let f : I → I be a function of class C3 with a finite number of critical points, and such
that Sf < 0. Then the number of periodic points of period k is finite for any k ≥ 1.

Theorem 1.8.3 applies to the quadratic family, of course. But checking the proof one gets something
slightly better:

Corollary 1.8.8: For any µ ∈ R∗ the function Fµ has at most one non-repelling periodic cycle, and it
attracts the orbit of 1/2.

Another very important property of functions with negative Schwarzian derivative is the following

Proposition 1.8.9: (Minimum principle) Let f : [a, b]→ R be a function of class C3 without critical points
and such that Sf < 0. Then

∀x ∈ (a, b) |f ′(x)| > min{|f ′(a)|, |f ′(b)|}.

We have almost all we need to complete the proof of Theorem 1.6.3.
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Definition 1.8.2: Let f : I → I be of class C1, where I ⊆ R is an interval. A subset Λ ⊆ I is a hyperbolic
repeller if it is compact, f -invariant, and there are K > 0 and c > 1 such that

∀x ∈ Λ,∀k ∈ N |(fk)′(x)| ≥ Kck.

So to conclude the proof of Theorem 1.6.3 it suffices to show that the set Λ is a hyperbolic repeller for
any µ > 4. A necessary and sufficient condition for a subset to be a hyperbolic repeller is the following:

Proposition 1.8.10: Let f : I → I be of class C1. An f -invariant compact subset Λ ⊆ I is a hyperbolic
repeller if and only if for every x ∈ Λ there is k = k(x) ∈ N such that |(fk)′(x)| > 1.

The final ingredient is the following deep theorem:

Theorem 1.8.11: (Misiurewicz) Let f : I → I be of class C3 with a finite number of critical points and
such that Sf < 0, where I ⊂ R is a closed interval. Then a compact f -invariant set Λ ⊆ I is a hyperbolic
repeller if it does not contain either critical points or non-repelling periodic points.

Corollary 1.8.12: Let µ > 4. Then the set Λ of points with bounded orbit is a hyperbolic repeller for Fµ.

Proof : Indeed, Corollary 1.8.8 shows that Fµ has no non-repelling periodic points, and we know that the
unique critical point 1/2 does not belong to Λ. Therefore we can apply Misiurewicz’s Theorem 1.8.11.

Hence the proof of Theorem 1.6.3 holds for all µ > 4, as claimed.

⌋


